Volume 46 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
Ying QIAN, Jizhuo YANG, Juan HUANG, Kedi YUAN, Junyi LIU, Yuemei FENG, Jianzhong YIN. The Role of Mitochondrial Function in Adipose Tissue in Obesity[J]. Journal of Kunming Medical University, 2025, 46(7): 1-9. doi: 10.12259/j.issn.2095-610X.S20250701
Citation: Ying QIAN, Jizhuo YANG, Juan HUANG, Kedi YUAN, Junyi LIU, Yuemei FENG, Jianzhong YIN. The Role of Mitochondrial Function in Adipose Tissue in Obesity[J]. Journal of Kunming Medical University, 2025, 46(7): 1-9. doi: 10.12259/j.issn.2095-610X.S20250701

The Role of Mitochondrial Function in Adipose Tissue in Obesity

doi: 10.12259/j.issn.2095-610X.S20250701
More Information
  • Corresponding author: 殷建忠,二级教授,博士生导师,国务院政府特殊津贴专家,云岭教学名师,国家级一流本科课程负责人,教育部首届高校健康教育教指委委员,健康云南发展智库首席专家,云南省高校营养与食品安全重点实验室主任、精准营养与公共健康博士生导师团队带头人,省级专家工作站项目负责人。研究领域:营养流行病学。主持国家重点研发计划课题1项、国家自然科学基金 4 项、云南省科技厅基础研究专项计划重点项目1项。获云南省哲学社会科学优秀成果一等奖1项、科技进步三等奖 4 项、卫生科技成果二等奖1项及三等奖3项。代表性成果发表于The Lancet Regional Health-Western Pacific、JHEP Reports、eLife等期刊,入选ESI高水平论文2篇,在The BMJ发表文章简评(Rapid Response)15篇,论文摘要入选Cell SymposiumThe Lancet Summit国际学术会议。主持完成教育部公共卫生与预防医学学术学位研究生课程建设项目,获云南省高等教育教学成果奖二等奖1项。
  • Received Date: 2025-06-04
  • Publish Date: 2025-07-21
  • Obesity has become a major global public health issue, and the situation in China is also becoming increasingly severe. Adipose tissue is categorized into white adipose tissue (WAT) and brown adipose tissue (BAT), which regulates metabolic homeostasis by secreting various adipokines. Mitochondria, as the core organelles of energy metabolism, its dysfunction are closely related to obesity. In the state of obesity, mitochondrial dynamics imbalance, oxidative stress, and metabolic dysfunction can all lead to energy metabolism disorders and adipose tissue dysfunction. Moreover, mitochondrial dysfunction not only affects adipose tissue but also extends to multiple organs such as muscles and livers, thereby exacerbating obesity and related metabolic diseases. In recent years, although numerous therapeutic strategies targeting mitochondrial dysfunction have been actively explored, their clinical translation faces challenges. This review explores the association between mitochondrial dysfunction in adipose tissue and obesity, analyses its mechanism and existing treatment strategies, aiming to provide a new perspective for the diagnosis and treatment of obesity.
  • loading
  • [1]
    GBD 2021 Adult BMI Collaborators. Global,regional,and national prevalence of adult overweight and obesity,1990-2021,with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021[J]. Lancet,2025,405(10481):813-838. doi: 10.1016/S0140-6736(25)00355-1
    [2]
    Pan X F,Wang L,Pan A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol,2021,9(6):373-392. doi: 10.1016/S2213-8587(21)00045-0
    [3]
    Forner F,Kumar C,Luber C A,et al. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions[J]. Cell Metab,2009,10(4):324-335. doi: 10.1016/j.cmet.2009.08.014
    [4]
    Scheja L,Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease[J]. Nat Rev Endocrinol,2019,15(9):507-524. doi: 10.1038/s41574-019-0230-6
    [5]
    Kajimura S,Spiegelman B M,Seale P. Brown and beige fat: Physiological roles beyond heat generation[J]. Cell Metab,2015,22(4):546-559. doi: 10.1016/j.cmet.2015.09.007
    [6]
    Crewe C,An Y A,Scherer P E. The ominous triad of adipose tissue dysfunction: Inflammation,fibrosis,and impaired angiogenesis[J]. J Clin Invest,2017,127(1):74-82. doi: 10.1172/JCI88883
    [7]
    Choe S S,Huh J Y,Hwang I J,et al. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders[J]. Front Endocrinol (Lausanne),2016,7:30.
    [8]
    Nunnari J,Suomalainen A. Mitochondria: In sickness and in health[J]. Cell,2012,148(6):1145-1159. doi: 10.1016/j.cell.2012.02.035
    [9]
    Kusminski C M,Scherer P E. Mitochondrial dysfunction in white adipose tissue[J]. Trends Endocrinol Metab,2012,23(9):435-443. doi: 10.1016/j.tem.2012.06.004
    [10]
    Fedorenko A,Lishko P V,Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria[J]. Cell,2012,151(2):400-413. doi: 10.1016/j.cell.2012.09.010
    [11]
    Wang R,Li X N. Different adipose tissue depots and metabolic syndrome in human[J]. Sheng Li Xue Bao,2017,69(3):357-365.
    [12]
    Cohen P,Spiegelman B M. Brown and beige fat: Molecular parts of a thermogenic machine[J]. Diabetes,2015,64(7):2346-2351. doi: 10.2337/db15-0318
    [13]
    Zong Y,Li H,Liao P,et al. Mitochondrial dysfunction: Mechanisms and advances in therapy[J]. Signal Transduct Target Ther,2024,9(1):124. doi: 10.1038/s41392-024-01839-8
    [14]
    Cogliati S,Enriquez J A,Scorrano L. Mitochondrial cristae: Where beauty meets functionality[J]. Trends Biochem Sci,2016,41(3):261-273. doi: 10.1016/j.tibs.2016.01.001
    [15]
    Baker N,Patel J,Khacho M. Linking mitochondrial dynamics,cristae remodeling and super complex formation: How mitochondrial structure can regulate bioenergetics[J]. Mitochondrion,2019,49:259-268. doi: 10.1016/j.mito.2019.06.003
    [16]
    Van Laar V S,Berman S B. The interplay of neuronal mitochondrial dynamics and bioenergetics: Implications for Parkinson's disease[J]. Neurobiol Dis,2013,51:43-55. doi: 10.1016/j.nbd.2012.05.015
    [17]
    Masenga S K,Kabwe L S,Chakulya M,et al. Mechanisms of oxidative stress in metabolic syndrome[J]. Int J Mol Sci,2023,24(9):7898. doi: 10.3390/ijms24097898
    [18]
    De Fano M,Bartolini D,Tortoioli C,et al. Adipose tissue plasticity in response to pathophysiological cues: A connecting link between obesity and its associated comorbidities[J]. Int J Mol Sci,2022,23(10):5511. doi: 10.3390/ijms23105511
    [19]
    Boutant M,Kulkarni S S,Joffraud M,et al. Mfn2 is critical for brown adipose tissue thermogenic function[J]. EMBO J,2017,36(11):1543-1558. doi: 10.15252/embj.201694914
    [20]
    Ding J,Zhang Z,Li S,et al. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone,possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress[J]. Arch Biochem Biophys,2022,718:109147. doi: 10.1016/j.abb.2022.109147
    [21]
    Pafili K,Kahl S,Mastrototaro L,et al. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease[J]. J Hepatol,2022,77(6):1504-1514. doi: 10.1016/j.jhep.2022.08.010
    [22]
    Eirin A,Thaler R,Glasstetter L M,et al. Obesity-driven mitochondrial dysfunction in human adipose tissue-derived mesenchymal stem/stromal cells involves epigenetic changes[J]. Cell Death Dis,2024,15(6):387. doi: 10.1038/s41419-024-06774-8
    [23]
    Lee Y H,Kuk M U,So M K,et al. Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases[J]. Antioxidants (Basel),2023,12(4):934. doi: 10.3390/antiox12040934
    [24]
    Anderson E J,Lustig M E,Boyle K E,et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans[J]. J Clin Invest,2009,119(3):573-581. doi: 10.1172/JCI37048
    [25]
    D'Autréaux B,Toledano M B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis[J]. Nat Rev Mol Cell Biol,2007,8(10):813-824. doi: 10.1038/nrm2256
    [26]
    Brand M D,Goncalves R L S,Orr A L,et al. Suppressors of superoxide-H2O2 production at site I(Q) of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury[J]. Cell Metab,2016,24(4):582-592. doi: 10.1016/j.cmet.2016.08.012
    [27]
    Chouchani E T,Pell V R,James A M,et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury[J]. Cell Metab,2016,23(2):254-263. doi: 10.1016/j.cmet.2015.12.009
    [28]
    Liu Q,Zhang D,Hu D,et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol,2018,103:115-124. doi: 10.1016/j.molimm.2018.09.010
    [29]
    Houstis N,Rosen E D,Lander E S. Reactive oxygen species have a causal role in multiple forms of insulin resistance[J]. Nature,2006,440(7086):944-948. doi: 10.1038/nature04634
    [30]
    Li H S,Zhou Y N,Li L,et al. HIF-1α protects against oxidative stress by directly targeting mitochondria[J]. Redox Biol,2019,25:101109. doi: 10.1016/j.redox.2019.101109
    [31]
    Cannon B,Nedergaard J. Brown adipose tissue: Function and physiological significance[J]. Physiol Rev,2004,84(1):277-359. doi: 10.1152/physrev.00015.2003
    [32]
    Koves T R,Ussher J R,Noland R C,et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance[J]. Cell Metab,2008,7(1):45-56. doi: 10.1016/j.cmet.2007.10.013
    [33]
    Petersen K F,Befroy D,Dufour S,et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance[J]. Science,2003,300(5622):1140-1142. doi: 10.1126/science.1082889
    [34]
    Bueno M,Calyeca J,Rojas M,et al. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis[J]. Redox Biol,2020,33:101509. doi: 10.1016/j.redox.2020.101509
    [35]
    Bennett C F,Latorre-Muro P,Puigserver P. Mechanisms of mitochondrial respiratory adaptation[J]. Nat Rev Mol Cell Biol,2022,23(12):817-835. doi: 10.1038/s41580-022-00506-6
    [36]
    Heikkinen A,Esser V F C,Lee S H T,et al. Twin pair analysis uncovers links between DNA methylation,mitochondrial DNA quantity and obesity[J]. Nat Commun,2025,16(1):4374. doi: 10.1038/s41467-025-59576-7
    [37]
    Rossetti G,Ermer J A,Stentenbach M,et al. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance[J]. Sci Adv,2021,7(39):eabi7514. doi: 10.1126/sciadv.abi7514
    [38]
    Kist M,Vucic D. Cell death pathways: Intricate connections and disease implications[J]. EMBO J,2021,40(5):e106700. doi: 10.15252/embj.2020106700
    [39]
    Guerra I M S,Ferreira H B,Melo T,et al. Mitochondrial fatty acid β-oxidation disorders: From disease to lipidomic studies-a critical review[J]. Int J Mol Sci,2022,23(22):13933. doi: 10.3390/ijms232213933
    [40]
    Chen B,Lyssiotis C A,Shah Y M. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis[J]. Mol Cell,2025,85(8):1487-1508. doi: 10.1016/j.molcel.2025.03.003
    [41]
    Li X,Zhao X,Qin Z,et al. Regulation of calcium homeostasis in endoplasmic reticulum-mitochondria crosstalk: Implications for skeletal muscle atrophy[J]. Cell Commun Signal,2025,23(1):17. doi: 10.1186/s12964-024-02014-w
    [42]
    Walkon L L,Strubbe-Rivera J O,Bazil J N. Calcium overload and mitochondrial metabolism[J]. Biomolecules,2022,12(12):1891. doi: 10.3390/biom12121891
    [43]
    Mahmoud A M. An overview of epigenetics in obesity: The role of lifestyle and therapeutic interventions[J]. Int J Mol Sci,2022,23(3):1341. doi: 10.3390/ijms23031341
    [44]
    Sun Y,Ge X,Li X,et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction[J]. Cell Death Dis,2020,11(10):914. doi: 10.1038/s41419-020-03122-4
    [45]
    Lolescu B M,Furdui-Lința A V,Ilie C A,et al. Adipose tissue as target of environmental toxicants: Focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease[J]. Mol Cell Biochem,2025,480(5):2863-2879. doi: 10.1007/s11010-024-05165-z
    [46]
    Bajpeyi S,Covington J D,Taylor E M,et al. Skeletal muscle PGC1α-1 nucleosome position and -260 nt DNA methylation determine exercise response and prevent ectopic lipid accumulation in Men[J]. Endocrinology,2017,158(7):2190-2199. doi: 10.1210/en.2017-00051
    [47]
    Rossman M J,Santos-Parker J R,Steward C A C,et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults[J]. Hypertension,2018,71(6):1056-1063. doi: 10.1161/HYPERTENSIONAHA.117.10787
    [48]
    Xu X,Pang Y,Fan X. Mitochondria in oxidative stress,inflammation and aging: From mechanisms to therapeutic advances[J]. Signal Transduct Target Ther,2025,10(1):190. doi: 10.1038/s41392-025-02253-4
    [49]
    Jiang S,Nong T,Yu T,et al. Long term exposure to multiple environmental stressors induces mitochondrial dynamics imbalance in testis: Insights from metabolomics and transcriptomics[J]. Environ Int,2025,198:109390. doi: 10.1016/j.envint.2025.109390
    [50]
    Chen L,Hong M,Luan C,et al. Efficient mitochondrial A-to-G base editors for the generation of mitochondrial disease models[J]. Nat Biotechnol,2025. doi: 10.1038/s41587-025-02685-x. doi: 10.1038/s41587-025-02685-x
    [51]
    Silva-Pinheiro P,Minczuk M. The potential of mitochondrial genome engineering[J]. Nat Rev Genet,2022,23(4):199-214. doi: 10.1038/s41576-021-00432-x
    [52]
    Lin X,Li L,Li S,et al. Targeting the opening of mitochondrial permeability transition pores potentiates nanoparticle drug delivery and mitigates cancer metastasis[J]. Adv Sci,2021,8(4):2002834. doi: 10.1002/advs.202002834
    [53]
    Joaquim M,Altin S,Bulimaga M B,et al. Mitofusin 2 displays fusion-independent roles in proteostasis surveillance[J]. Nat Commun,2025,16(1):1501. doi: 10.1038/s41467-025-56673-5
    [54]
    Zhang Y,Zhang H,Zhao F,et al. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment[J]. Acta Pharm Sin B,2023,13(12):5107-5120. doi: 10.1016/j.apsb.2023.06.011
    [55]
    Wang S,Wang Z,Zang Z,et al. A mitochondrion-targeting piezoelectric nanosystem for the treatment of erectile dysfunction via autophagy regulation[J]. Adv Mater,2025,37(5):e2413287. doi: 10.1002/adma.202413287
    [56]
    Zhang K,Du Y,Yang S,et al. Irisin suppressed the progression of TBI via modulating AMPK/MerTK/autophagy and SYK/ROS/inflammatory signaling[J]. Sci Rep,2025,15(1):15583. doi: 10.1038/s41598-025-00066-7
    [57]
    de Vos W M,Tilg H,Van Hul M,et al. Gut microbiome and health: Mechanistic insights[J]. Gut,2022,71(5):1020-1032. doi: 10.1136/gutjnl-2021-326789
  • Relative Articles

    [1] Rong SU, Ling LIN, Yuan ZHAO, Ailing YANG, Mingguo ZHANG, Hu ZHANG, Guoyu MA. The Clinical Features of Non-alcoholic Fatty Liver Disease and Its Risked Factors in Patients with Chronic Heart Failure. Journal of Kunming Medical University, 2025, 46(8): 1-7.
    [2] Ling NIU, Boyi LI, Cuijuan MIAO, Cheng ZHANG, Yan TANG, Fang LIU, Rong MA. Relationship between Leptin,Uric Acid,and Obesity in Type 2 Diabetes Mellitus. Journal of Kunming Medical University, 2023, 44(11): 140-144.  doi: 10.12259/j.issn.2095-610X.S20231121
    [3] Shigang DU, Peiqi CHEN, Ling ZHAO, Xiangming ZHOU, Yuanyuan LIAO, Liman SHI, Tingyu KE. Effect of GLP-1RAs on Overweight/obese Patients. Journal of Kunming Medical University, 2023, 44(): 1-5.  doi: 10.12259/j.issn.2095-610X.S20230702
    [4] Cong LIU, Guishuai WU, Rui PU, Shude LI, Jianping TAO, Renfa ZHANG. EGCG Improves Myocardial Fibrosis Induced by High Fat and High Sugar Diet in Obese Rats by Inhibiting TGF-β1/Smads Signaling Pathway. Journal of Kunming Medical University, 2022, 43(5): 18-26.  doi: 10.12259/j.issn.2095-610X.S20220506
    [5] Yandong GUO, Rudan HONG, Yanjiao WANG, Teng ZHANG, Yuemei FENG, Nishang ZHANG, Ying QIAN, Zaogai YANG, Fei MI, Jianzhong YIN. Effects of Perindopril on Intestinal Microecology in Obese Rats. Journal of Kunming Medical University, 2022, 43(11): 9-16.  doi: 10.12259/j.issn.2095-610X.S20221101
    [6] Jia-dai TANG, Lin XIE, Hong-li SONG, Jiao-jiao CHEN. Correlation between Metabolic Syndrome and the Occurrence and Development of Gastric Cancer. Journal of Kunming Medical University, 2021, 42(11): 171-175.  doi: 10.12259/j.issn.2095-610X.S20211130
    [7] Xue-fang YANG, Rong XIAO, Shun-shan LIAO, De-hong CAI, Zhi-bi ZHANG, Jian-kun LIU. Aqueous Extract of Moringa Oleifera Leaves Alleviate Olanzapine-Induced Metabolic Syndrome in Mice. Journal of Kunming Medical University, 2021, 42(4): 20-27.  doi: 10.12259/j.issn.2095-610X.S20210404
    [8] Lu YANG, Wen-jun SHI, Ling ZHAO, Shi-gang DU, Pei-qi CHEN, Ting-yu KE. The Correlation between Visceral Fat Area in Patients with Type 2 Diabetes and Obesity and Glycolipid Metabolism. Journal of Kunming Medical University, 2021, 42(9): 65-70.  doi: 10.12259/j.issn.2095-610X.S20210932
    [9] Yun ZHOU, Liu YANG, Xue-qing NA. Correlation Between Obesity and Oxygen Reserve during Induction of General Anesthsia. Journal of Kunming Medical University, 2020, 41(11): 150-153.  doi: 10.12259/j.issn.2095-610X.S20201130
    [10] Tang Juan , Nian Xin . . Journal of Kunming Medical University, 2020, 41(03): 137-143.
    [11] Wang Ya Nan , Li Zhi Gang , Zhang Chao , Li Shu De , Li Tao , Peng Jian Zhi . Homocysteine Suppress PI3K/Akt Signaling Pathway via Promoting the Expression of TRB3 in Adipose Tissue. Journal of Kunming Medical University, 2017, 38(06): 15-18.
    [12] Li Xiao Hong , Ma Run Mei , Chen Zhuo . . Journal of Kunming Medical University, 2017, 38(05): 64-67.
    [13] Jiang Ting Ting . The Relationship Between Polycystic Ovary Syndrome and Vaspin,Apelin and Leptin. Journal of Kunming Medical University,
    [14] Gui Qi . Correlation of Apelin,Vaspin,Leptin with Endometrial Cancer. Journal of Kunming Medical University,
    [15] Li Gui Ping . . Journal of Kunming Medical University,
    [16] Chen Yong Sheng . . Journal of Kunming Medical University,
    [17] Su Mei Hui . . Journal of Kunming Medical University,
    [18] Li Xian Li . . Journal of Kunming Medical University,
    [19] . Association of Plasma Concentration of Visfatin with Obesity and Metabolic Parameters in Chinese Han Adults. Journal of Kunming Medical University,
    [20] Yang Min Li . Effect and Evaluation of Comprehensive Weight Reduction Protocols on Obese College Girls. Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (222) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return