Volume 46 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
Shumei QIU, Haiyan ZHANG, Huawei WANG. Predictive Value and Model Construction of C-reactive Protein/D-dimer Ratio and Fibrinogen/Albumin Ratio for the Occurrence of MACE after PCI in Patients with Coronary Artery Disease[J]. Journal of Kunming Medical University, 2025, 46(7): 92-100. doi: 10.12259/j.issn.2095-610X.S20250711
Citation: Shumei QIU, Haiyan ZHANG, Huawei WANG. Predictive Value and Model Construction of C-reactive Protein/D-dimer Ratio and Fibrinogen/Albumin Ratio for the Occurrence of MACE after PCI in Patients with Coronary Artery Disease[J]. Journal of Kunming Medical University, 2025, 46(7): 92-100. doi: 10.12259/j.issn.2095-610X.S20250711

Predictive Value and Model Construction of C-reactive Protein/D-dimer Ratio and Fibrinogen/Albumin Ratio for the Occurrence of MACE after PCI in Patients with Coronary Artery Disease

doi: 10.12259/j.issn.2095-610X.S20250711
  • Received Date: 2025-04-03
  • Publish Date: 2025-07-21
  •   Objective  To comprehensively assess the predictive value of C-reactive protein (CRP)/D-dimer (D-D) and albumin/fibrinogen (FAR) in predicting major adverse cardiovascular events (MACE) after percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD) and to construct a nomogram model for predicting post-procedural MACE in CHD patients.   Methods  A retrospective study was conducted on 201 CHD patients who underwent PCI at the First Affiliated Hospital of Kunming Medical University between June 2022 and March 2025. These patients were divided into MACE group (n = 77) and non-MACE group (n = 124) based on whether MACE occurred or not. 84 CHD patients from another medical center were also collected as the validation set. The expression levels of CRP/D-D and FAR were compared between the two groups; independent predictors of postoperative MACE in CHD patients were screened by univariate and multivariate logistic regression analyses; the predictive value of CRP/D-D and FAR for the occurrence of postoperative MACE in CHD patients was assessed using ROC curves; A nomogram model was established integrating indicators such as CRP/D-D and FAR, and internal and external validations of the nomogram model were conducted using ROC curves, calibration curves, and decision curve analysis (DCA) curves.   Results  Compared with CHD patients in the non-MACE group, CRP/D-D and FAR levels were significantly higher in the MACE group (P < 0.05). Multivariate analysis showed that age, NTproBNP, WBC, CRP/D-D, and FAR were independent risk factors for postoperative MACE in CHD patients (P < 0.05). ROC curve analysis indicated that the AUC predicted by CRP/D-D combined with FAR was higher than that of CRP/D-D alone (Z = 3.473, P < 0.001), and FAR alone(Z = 2.812, P < 0.05) . The Nomogram model constructed based on the aforementioned factors was validated internally and externally, and the results showed that the Nomogram model had good calibration, excellent discriminative ability, and reliable clinical utility, accurately predicting the risk of postoperative MACE.   Conclusion  The CRP/D-D ratio and FAR, as emerging composite biomarkers, showed significant predictive ability in predicting the risk of MACE after PCI in patients with CHD, providing a new reliable tool for clinical risk stratification.
  • loading
  • [1]
    Zhang X,Wang Y,Liu L,et al. Efficacy of Wen-Dan Decoction in the treatment of patients with coronary heart disease: A protocol for systematic review and meta-analysis[J]. Medicine (Baltimore),2022,101(1):e28041.
    [2]
    Kou L,Yang N,Dong B,et al. Potential roles of IL-38,among other inflammation-related biomarkers,in predicting post-percutaneous coronary intervention cardiovascular events[J]. Front Cardiovasc Med,2024,11:1426939. doi: 10.3389/fcvm.2024.1426939
    [3]
    Saraste A,Knuuti J. ESC 2019 guidelines for the diagnosis and management of chronic coronary syndromes[J]. Herz,2020,45(5):409-420. doi: 10.1093/eurheartj/ehz425
    [4]
    Rusnak J,Fastner C,Behnes M,et al. Biomarkers in stable coronary artery disease[J]. Curr Pharm Biotechnol,2017,18(6):456-471.
    [5]
    Avan A,Tavakoly Sany S B,Ghayour-Mobarhan M,et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice[J]. J Cell Physiol,2018,233(11):8508-8525. doi: 10.1002/jcp.26791
    [6]
    Chen R,Liu C,Zhou P,et al. Prognostic Value of D-dimer in patients with acute coronary syndrome treated by percutaneous coronary intervention: A retrospective cohort study[J]. Thromb J,2021,19(1):30.
    [7]
    Besir Y,Karaagac E,Kurus M,et al. The effect of bovine serum albumin-glutaraldehyde and polyethylene glycol polymer on local tissue reaction and inflammation in rabbit carotid artery anastomosis[J]. Vascular,2023,31(3):554-563. doi: 10.1177/17085381221075484
    [8]
    Dhindsa S,Ghanim H,Dandona P. Nonesterified fatty acids,albumin,and platelet aggregation[J]. Diabetes.,2015,64(3):703-705. doi: 10.2337/db14-1481
    [9]
    Amaro E,Moore-Lotridge S N,Wessinger B,et al. Albumin and the fibrinogen-to-albumin ratio: Biomarkers for the acute phase response following total knee arthroplasty[J]. PLoS One,2021,16(2):e0247070.
    [10]
    Joseph J,Velasco A,Hage F G,et al. Guidelines in review: Comparison of ESC and ACC/AHA guidelines for the diagnosis and management of patients with stable coronary artery disease[J]. J Nucl Cardiol,2018,25(2):509-515. doi: 10.1007/s12350-017-1055-0
    [11]
    Tian J,Zhang L,Yang X,et al. The effect of Shexiang Tongxin Dropping Pills on coronary microvascular dysfunction (CMVD) among those with a mental disorder and non-obstructive coronary artery disease based on stress cardiac magnetic resonance images: A study protocol[J]. Medicine (Baltimore),2020,99(21):e20099.
    [12]
    Yan J,Tian J,Yang H,et al. A clinical decision support system for predicting coronary artery stenosis in patients with suspected coronary heart disease. Comput Biol Med,2022,151[J]: 106300.
    [13]
    Bhatt D L. Percutaneous coronary intervention in 2018[J]. JAMA,2018,319(20):2127-2128. doi: 10.1001/jama.2018.5281
    [14]
    Hamasaki S,Tei C. Effect of coronary endothelial function on outcomes in patients undergoing percutaneous coronary intervention[J]. J Cardiol,2011,57(3):231-238. doi: 10.1016/j.jjcc.2011.02.003
    [15]
    Chen X,Xu X,Li Y,et al. Association between fibrinogen-to-albumin ratio and functional prognosis of 3 months in patients with acute ischemic stroke after intravenous thrombolysis[J]. Brain Behav,2024,14(1):e3364. doi: 10.1002/brb3.3364
    [16]
    何平. D-二聚体,超敏C反应蛋白,脂蛋白a检测与冠心病早期诊断的关联性研究[J]. 标记免疫分析与临床,2023,30(3):473-475.
    [17]
    Wang X,Guo R,Huang M,et al. Fibrinogen-to-albumin ratio and glucose metabolic states in patients with coronary heart disease[J]. Angiology,2025,76(3):271-280. doi: 10.1177/00033197231206235
    [18]
    Wang P,Yuan D,Zhang C,et al. High fibrinogen-to-albumin ratio with type 2 diabetes mellitus is associated with poor prognosis in patients undergoing percutaneous coronary intervention: 5-year findings from a large cohort[J]. Cardiovasc Diabetol,2022,21(1):46. doi: 10.1186/s12933-022-01477-w
    [19]
    Xu T,Yu D,Zhou W,et al. A nomogram model for the risk prediction of type 2 diabetes in healthy Eastern China residents: A 14-year retrospective cohort study from 15,166 participants[J]. EPMA J,2022,13(3):397-405. doi: 10.1007/s13167-022-00295-0
    [20]
    王月梅,宋妮. 老年冠心病患者PCI术后MACE发生的危险因素分析及强化预防护理对策[J]. 临床医学研究与实践,2018,3(22):2.
    [21]
    Kong S,Chen C,Zheng G,et al. A prognostic nomogram for long-term major adverse cardiovascular events in patients with acute coronary syndrome after percutaneous coronary intervention[J]. BMC Cardiovasc Disord,2021,21(1):253. doi: 10.1186/s12872-021-02051-0
  • Relative Articles

    [1] Junqiang WANG, Ying CHEN, Fengchen GAO, Wenxiu ZHAO, Shuxuan CAO, Yixi LI, Limei HE, Zexing YANG. The Construction of A Predictive Model for Clinical Pregnancy Outcome in Frozen-thawed Embryo Transfer Cycles in Women with Advanced Maternal Age. Journal of Kunming Medical University, 2025, 46(8): 1-7.
    [2] Yuanzhen WANG, Hongyan WEI, Renhai TIAN, Yongzhen Chen, Danqing XU, Yingyuan ZHANG, Lixian CHANG, Chunyun LIU, Li LIU. Establishment and Evaluation of a Risk Prediction Model for Chronic Liver Failure Complicated by Primary Hepatocellular Carcinoma Before Intervention. Journal of Kunming Medical University, 2025, 46(3): 139-147.  doi: 10.12259/j.issn.2095-610X.S20250321
    [3] Jun DENG, Jun WANG, Xi WANG, Change GAO, Xiao CHEN, Mingxia SHI. Prediction Model and Its Value of IrAEs Based on Peripheral Blood Markers. Journal of Kunming Medical University, 2025, 46(4): 57-66.  doi: 10.12259/j.issn.2095-610X.S20250408
    [4] Taishan WANG, Guiyang JIA, Guoyue LIU, Erqin SONG, Guizhen YIN. Research Progress on Early Risk Prediction Model of Acute Respiratory Distress Syndrome. Journal of Kunming Medical University, 2025, 46(5): 141-148.  doi: 10.12259/j.issn.2095-610X.S20250517
    [5] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [6] Wenqing MIAO, Yu WANG, Xiaoli ZHAO, Nini TIAN, Liying YOU. Analysis of Differential Gene Expression and Function in Peripheral Blood of Patients with Coronary Heart Disease and Acute Myocardial Infarction. Journal of Kunming Medical University, 2022, 43(6): 25-34.  doi: 10.12259/j.issn.2095-610X.S20220614
    [7] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [8] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [9] Shuo WANG, Qi RU, Xiaochan ZHANG, Zhiyu YANG, Le WANG, Liu LI. Application of MTHFR C677T Combined with CYP2C19 Gene Detection after Percutaneous Paclitaxel Eluting Coronary Balloon Dilatation Coronary Angioplasty. Journal of Kunming Medical University, 2022, 43(6): 92-98.  doi: 10.12259/j.issn.2095-610X.S20220618
    [10] Shuo WANG, Yunyan QI, Pu WANG, Yaru WANG, Xiaochan ZHANG, Liu LI. Studies on the Prognosis between Serum sST2 Level and Coronary Heart Disease. Journal of Kunming Medical University, 2022, 43(1): 112-117.  doi: 10.12259/j.issn.2095-610X.S20220115
    [11] Hui DUAN, Dan HAN, Ling MA, De-yan LI, Shao-lei KANG. Evaluation of CCTA Combined with Rest Myocardial Perfusion after PCI. Journal of Kunming Medical University, 2021, 42(2): 70-74.  doi: 10.12259/j.issn.2095-610X.S20210229
    [12] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [13] Bin LIU, Xian-gang LI, Min ZHANG, Fang ZHOU, Ren-hua LIN, Jie YANG, Liang ZHANG, Xian-kun WANG, Ya-nan PAN. Main Influencing Factors of the Second Hospitalization of Patients with Coronary Heart Disease. Journal of Kunming Medical University, 2021, 42(6): 103-109.  doi: 10.12259/j.issn.2095-610X.S20210618
    [14] Jing TANG, Jun-chao HUANG, Ya-fei HUANG, Ming-zhu GENG, Xiao-qin MAO, Jian-ping PU. Application of Lipoprotein-associated Phospholipase A2 in Coronary Heart Disease Patients Taking Statins. Journal of Kunming Medical University, 2021, 42(12): 6-10.  doi: 10.12259/j.issn.2095-610X.S20211205
    [15] Liu LI, Xiao-chan ZHANG, Qi RU, Shuo WANG, Quo-qing QI, Hong-liang ZHAO. The Association of Methylenetetrahydrofolate Reductase Gene Polymorphism with Coronary Heart Disease. Journal of Kunming Medical University, 2021, 42(5): 138-142.  doi: 10.12259/j.issn.2095-610X.S20210525
    [16] Zheng Lin Qiong , Lu Jing , Ye Ji Ming . . Journal of Kunming Medical University, 2019, 40(06): 90-92.
    [17] Li Lin , Li Ji Yi , Wang De Zhao , Liu Wei . 武汉地区123例冠心病患者CYP2C19基因多态性分布. Journal of Kunming Medical University, 2017, 38(06): 60-63.
    [18] Feng Yong Hong . . Journal of Kunming Medical University,
    [19] Dai Qing Yuan . . Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (118) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return