Volume 46 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Ruifeng QIN, Jiadong XUE, Jia ZHANG, Fan LIU, Shaohui ZHANG, Liyang YIN, Zengjiang YUAN. Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer[J]. Journal of Kunming Medical University, 2025, 46(10): 44-52. doi: 10.12259/j.issn.2095-610X.S20251005
Citation: Ruifeng QIN, Jiadong XUE, Jia ZHANG, Fan LIU, Shaohui ZHANG, Liyang YIN, Zengjiang YUAN. Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer[J]. Journal of Kunming Medical University, 2025, 46(10): 44-52. doi: 10.12259/j.issn.2095-610X.S20251005

Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer

doi: 10.12259/j.issn.2095-610X.S20251005
  • Received Date: 2025-07-18
    Available Online: 2025-09-28
  • Publish Date: 2025-10-28
  •   Objective  To investigate if Shikonin (SKI) can induce ferroptosis via the ROS/JNK pathway to inhibit the malignant behavior of pancreatic cancer.   Methods  Human pancreatic cancer PANC-1 or BxPC-3 cells were selected. Drug efficacy experiments were established with a blank control group (Con group) and low, medium, and high dose SKI groups (2, 4, 8 μmol/L). JNK-related mechanism experiments were categorized into a blank control group (Con group), SKI group, and SKI+JNK inhibitor group (SKI+SP600125 group). ROS-related mechanism experiments were divided into a blank control group (Con group), SKI group, and SKI+ROS scavenger group (SKI+NAC group). Cell viability was assessed using the CCK-8 method to calculate IC50; Transwell experiments evaluated cell migration and invasion capabilities; the C11 BODIPY 581/591 probe was utilized for flow cytometry to detect lipid peroxidation levels, while the FerroOrange fluorescent probe measured ferrous ion levels; ROS levels were determined using a ROS detection kit; the Western blot method identified ferroptosis-related key proteins (SLC7A11, GPX4), apoptosis-related proteins (Caspase3, PARP), and JNK pathway proteins (JNK, p-JNK); an in vivo xenograft tumor model was employed to assess tumor proliferation.   Results  SKI treatment significantly and dose-dependently inhibited PANC-1 cell viability (IC50: 6.04 μmol/L, P < 0.0001) and BxPC-3 cell viability (IC50: 12.27 μmol/L, P < 0.0001), and significantly reduced migrating and invasive cell numbers (P < 0.0001), with migration cell numbers dropping to about 30% of the control group at 8 μmol/L SKI treatment (P < 0.0001). Mechanistically, SKI induced increased intracellular lipid peroxidation, Fe2+ accumulation, and significant ROS production (P < 0.0001), significantly downregulated SLC7A11 and GPX4 protein expression (GPX4 protein expression reduced to 40% of that in the control group, P < 0.0001), and activated JNK phosphorylation (p-JNK/JNK ratio increased to 2.8-fold, P < 0.0001). Pretreatment with the JNK-specific inhibitor SP600125 or ROS scavenger NAC effectively reversed SKI's inhibition of cell viability and downregulation of SLC7A11/GPX4 protein (all P < 0.01). SKI also inhibited pancreatic cancer tumor cell proliferation in vivoP < 0.0001).   Conclusion  SKI induces ferroptosis by activating the ROS/JNK pathway, thereby inhibiting pancreatic cancer proliferation, migration, and invasion.
  • loading
  • [1]
    Halbrook C J, Lyssiotis C A, Pasca di Magliano M, et al. Pancreatic cancer: Advances and challenges[J]. Cell, 2023, 186(8): 1729-1754. doi: 10.1016/j.cell.2023.02.014
    [2]
    Klein A P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 493-502. doi: 10.1038/s41575-021-00457-x
    [3]
    Yu B F, Shao S W, Ma W X. Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy[J]. Cancer Lett, 2025, 610: 217350. doi: 10.1016/j.canlet.2024.217350
    [4]
    Heinrich M A, Mostafa A M R H, Morton J P, et al. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models[J]. Adv Drug Deliv Rev, 2021, 174: 265-293.
    [5]
    Grunwald B T, Devisme A, Andrieux G, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer[J]. Cell, 2021, 184(22): 5577-5592. e18.
    [6]
    Gupta T, Murtaza M. Advancing targeted therapies in pancreatic cancer: Leveraging molecular abberrations for therapeutic success[J]. Prog Biophys Mol Biol, 2025, 196: 19-32. doi: 10.1016/j.pbiomolbio.2025.02.003
    [7]
    Jiang X, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
    [8]
    Zheng J S, Conrad M. Ferroptosis: When metabolism meets cell death[J]. Physiol Rev, 2025, 105(2): 651-706. doi: 10.1152/physrev.00031.2024
    [9]
    Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4): 513-534. doi: 10.1016/j.ccell.2024.03.011
    [10]
    Cheng X F, Zhao F, Ke B X, et al. Harnessing ferroptosis to overcome drug resistance in colorectal cancer: Promising therapeutic approaches[J]. Cancers (Basel), 2023, 15(21): 5209. doi: 10.3390/cancers15215209
    [11]
    Liu J, Kang R, Tang D L. The art of war: Ferroptosis and pancreatic cancer[J]. Front Pharmacol, 2021, 12: 773909. doi: 10.3389/fphar.2021.773909
    [12]
    Lyu H, Kong J H, Chen J S, et al. The emerging scenario of ferroptosis in pancreatic cancer tumorigenesis and treatment[J]. Int J Mol Sci, 2024, 25(24): 13334. doi: 10.3390/ijms252413334
    [13]
    Guo Y M, Zhou M M, Mu Z Z, et al. Recent advances in shikonin for the treatment of immune-related diseases: Anti-inflammatory and immunomodulatory mechanisms[J]. Biomedicine Pharmacother, 2023, 165: 115138.
    [14]
    Yadav S, Sharma A, Ahmad Nayik G, et al. Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology[J]. Front Pharmacol, 2022, 13: 905755. doi: 10.3389/fphar.2022.905755
    [15]
    Qi K, Li J Y, Hu Y, et al. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species[J]. Frontiers Pharmacology, 2024, 15: 1416781. doi: 10.3389/fphar.2024.1416781
    [16]
    Dong H, Chang C D, Gao F, et al. The anti-leukemia activity and mechanisms of shikonin: A mini review[J]. Front Pharmacol, 2023, 14: 1271252. doi: 10.3389/fphar.2023.1271252
    [17]
    Wang B Q, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis[J]. Arch Toxicol, 2023, 97(6): 1439-1451. doi: 10.1007/s00204-023-03476-6
    [18]
    Zheng Y L, Liu F Y, Huang Y H, et al. SNORA58 facilitates radioresistance via suppressing JNK1-mediated ferroptosis in esophageal squamous cell carcinoma[J]. Adv Sci (Weinh), 2025, e08515.
    [19]
    Koeberle S C, Kipp A P, Stuppner H, et al. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling[J]. Med Res Rev, 2023, 43(3): 614-682. doi: 10.1002/med.21933
    [20]
    Tsai M F, Chen S M, Ong A Z, et al. Shikonin induced program cell death through generation of reactive oxygen species in renal cancer cells[J]. Antioxidants (Basel), 2021, 10(11): 1831. doi: 10.3390/antiox10111831
    [21]
    Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action[J]. Eur J Med Chem, 2022, 235: 114314. doi: 10.1016/j.ejmech.2022.114314
    [22]
    Wu J J, Shi Y T, Zhou M, et al. Nutrient vitamins enabled metabolic regulation of ferroptosis via reactive oxygen species biology[J]. Front Pharmacol, 2024, 15: 1434088. doi: 10.3389/fphar.2024.1434088
    [23]
    Ye S Y, Hu X Y, Sun S W, et al. Oridonin promotes RSL3-induced ferroptosis in breast cancer cells by regulating the oxidative stress signaling pathway JNK/Nrf2/HO-1[J]. Eur J Pharmacol, 2024, 974: 176620. doi: 10.1016/j.ejphar.2024.176620
    [24]
    Qi H, Zhang X, Liu H H, et al. Shikonin induced apoptosis mediated by endoplasmic reticulum stress in colorectal cancer cells[J]. J Cancer, 2022, 13(1): 243-252. doi: 10.7150/jca.65297
    [25]
    Lee J H, Han S H, Kim Y M, et al. Shikonin inhibits proliferation of melanoma cells by MAPK pathway-mediated induction of apoptosis[J]. Biosci Rep, 2021, 41(1): BSR20203834. doi: 10.1042/BSR20203834
    [26]
    Kiraly J, Szabo E, Fodor P, et al. Shikonin causes an apoptotic effect on human kidney cancer cells through Ras/MAPK and PI3K/AKT pathways[J]. Molecules, 2023, 28(18): 6725. doi: 10.3390/molecules28186725
    [27]
    Liu S Y, Li L Y, Ren D M. Anti-cancer potential of phytochemicals: The regulation of the epithelial-mesenchymal transition[J]. Molecules, 2023, 28(13): 5069. doi: 10.3390/molecules28135069
  • Relative Articles

    [1] Xiaoxia SHEN, Xiaodong ZHAO, Yongjian SONG. SIRT1 Agonist Treatment of Mice with Coronary Artery Disease Improves Myocardial Function by modulating Nrf2-GPX4 Ferroptosis Pathway. Journal of Kunming Medical University, 2025, 46(5): 55-64.  doi: 10.12259/j.issn.2095-610X.S20250507
    [2] Shijun SHEN, Yamei YIN, Li SONG, Chunming XIANG, Heng LI. Influence of Nutrition Intervention on Quality of Life and Survival Prognosis of Patients with Locally Advanced Pancreatic Cancer. Journal of Kunming Medical University, 2025, 46(4): 136-142.  doi: 10.12259/j.issn.2095-610X.S20250418
    [3] Runlin FENG, Zongqi DENG, Mengyao WU, Yunna WANG, Yu WANG, Guilan LIU, Yanping TAO. GJB4 Gene Expression in Relation to Clinical and Pathological Features of Pancreatic Cancer Patients. Journal of Kunming Medical University, 2025, 46(1): 78-86.  doi: 10.12259/j.issn.2095-610X.S20250110
    [4] Xiaoxia DONG, Shuxian CHEN. Study on the Mechanism by Which GPX4 Expression Promotes Ferroptosis and Participates in Malignant Behavior of Endometrial Carcinoma. Journal of Kunming Medical University, 2025, 46(11): 1-9.
    [5] Liuzheng LI, Leisheng XU, Kanghong LUO, Mingting ZHANG, Yan WANG, Xuechang GAO, Jiawei FENG, Guocha GONG. Effect of SLC7A11 Gene on Progression of Hepatocellular Carcinoma by Regualating Iron Death Pathway. Journal of Kunming Medical University, 2025, 46(10): 32-43.  doi: 10.12259/j.issn.2095-610X.S20251004
    [6] Chunyu ZHANG, Jian LUO, Qi ZHOU. miR-147a Regulates Ferroptosis and Affects Invasion and Metastasis of Cervical Cancer Cells. Journal of Kunming Medical University, 2025, 46(10): 53-60.  doi: 10.12259/j.issn.2095-610X.S20251006
    [7] Yuhua XIAO, Lingxin YAN, Jidong CAO, Jinhua CHAI. Expression of LMO2 and CAPRIN1 in Pancreatic Cancer Tissues and Their Correlation with Prognosis. Journal of Kunming Medical University, 2025, 46(12): 1-9.
    [8] Xinyuan XIE, Xiaochen NIU, Jianhui SUN, Yahan ZHANG, Pengfei CHEN. Ferroptosis-Related LncRNAs Signature Predicts the Prognosis of Stomach Adenocarcinoma. Journal of Kunming Medical University, 2025, 46(4): 46-56.  doi: 10.12259/j.issn.2095-610X.S20250407
    [9] Qingbin ZENG, Rong XU, Wenzhi DONG, Zhijian CHEN, Weiran LIAO, Kui LONG. Expression of Zinc Finger Transcription Factor Sall4 In Pancreatic Cancer and Its Impact on Cell Invasion and Migration. Journal of Kunming Medical University, 2024, 45(12): 42-48.  doi: 10.12259/j.issn.2095-610X.S20241206
    [10] Lei ZHU, Ruixue LI, Changlei BAO, Chenchen HUANG, Shuxin LIANG, Zhenlin ZHAO, Hong ZHU. Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer. Journal of Kunming Medical University, 2024, 45(2): 39-48.  doi: 10.12259/j.issn.2095-610X.S20240206
    [11] Maimaitizunong Rezeye, Xiujuan LI, Ling LIU, Hui LI. Effects of Ferroptosis Inhibitor KIF20A on Biological Behavior and Ferroptosis of Esophageal Carcinoma Cells. Journal of Kunming Medical University, 2024, 45(2): 49-56.  doi: 10.12259/j.issn.2095-610X.S20240207
    [12] Wei LI, Lihong JIANG, Lijing MA, Rui CHEN, Tongshuo YANG. Research Progress of Iron Death in Cardiomyopathy. Journal of Kunming Medical University, 2024, 45(3): 180-185.  doi: 10.12259/j.issn.2095-610X.S20240327
    [13] Dong WANG, Bibo GAO, Huiying SUN, Denghui LENG, Xiaoping RAN, Wen LIN. miR-216b-5p Promotes Ferroptosis in Glioblastoma Cells by Targeting NCOA3. Journal of Kunming Medical University, 2023, 44(8): 44-52.  doi: 10.12259/j.issn.2095-610X.S20230805
    [14] Sijia LIU, Yaying YANG, Chao PENG, Yamin LI. Application of Contrast-enhanced CT and MRI in Preoperative TNM Staging of Pancreatic Cancer. Journal of Kunming Medical University, 2023, 44(6): 107-112.  doi: 10.12259/j.issn.2095-610X.S20230628
    [15] Yongrui YANG, Liyuan WANG, Haiwen LI, Zhirong ZHAO, Rui PU, Guishuai WU, Shude LI. Scutellarin Ameliorates Liver Fibrosis in Nonalcoholic Fatty Liver Disease by Inhibiting NOX Expression. Journal of Kunming Medical University, 2022, 43(7): 38-45.  doi: 10.12259/j.issn.2095-610X.S20220721
    [16] Jing-hui LI, Ming ZHU, Hai QU, Qiu-yu LI, Yu-juan WU, He-ying YANG, Yu-zhu WANG, Yan-ping LI. miR-490-3p Suppresses EMT of SW1990 Pancreatic Cancer Cells. Journal of Kunming Medical University, 2021, 42(3): 10-17.  doi: 10.12259/j.issn.2095-610X.S20210305
    [17] Shen Hong , Wang Xiu Yun , Xu Hui Qiong , Liu Xia . Analysis of Clinicopathological Features of 274 Cases of Pancreatic Cancer and Risk Factors Affecting Prognosis. Journal of Kunming Medical University, 2019, 40(03): 97-101.
    [18] Lei Xi Feng , Liu Tao , Dong Shan Chao , Yang Shao Hua , Zhang Wei . . Journal of Kunming Medical University, 2019, 40(07): 19-24.
    [19] Wang Ye . Influences of Pretreating with 5-Aza-2'-dc on the Reactive Oxygen Level and the Expression of Protein Bcl-2 and Bax in Paraquat Sensitized V79 Cells. Journal of Kunming Medical University,
    [20] Lei Xue Fen . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (312) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return