Turn off MathJax
Article Contents
Chuanqi YANG, Ruolian ZHAO, Yajuan TANG, Zijie LIU, Huan LI, Hui ZHANG, Lin CHAI. Core Active Substances and Molecular Mechanisms of Traditional Chinese Medicine in Treating IgA Nephropathy Based on Data Mining and Network Pharmacology[J]. Journal of Kunming Medical University.
Citation: Chuanqi YANG, Ruolian ZHAO, Yajuan TANG, Zijie LIU, Huan LI, Hui ZHANG, Lin CHAI. Core Active Substances and Molecular Mechanisms of Traditional Chinese Medicine in Treating IgA Nephropathy Based on Data Mining and Network Pharmacology[J]. Journal of Kunming Medical University.

Core Active Substances and Molecular Mechanisms of Traditional Chinese Medicine in Treating IgA Nephropathy Based on Data Mining and Network Pharmacology

  • Received Date: 2025-12-09
    Available Online: 2026-01-14
  •   Objective  To predict the mechanism of traditional Chinese medicine (TCM) in treating IgA nephropathy (IgAN) based on data mining and network pharmacology, and to verify findings through in vitro experiments.   Methods  Medical case records for IgAN treatment were retrieved from the Ancient and Modern Medical Case Cloud Platform to screen core drugs. Drug targets were searched in databases including TCMSP, and IgAN targets were searched in databases such as Genecards. Venn diagrams were used to identify intersecting targets, establishing disease-component-target network maps. PPI networks were constructed, followed by GO and KEGG analysis, with molecular docking validation. An IgAN cell model was established with control groups, model groups (IgA), and drug-treated groups at different concentrations (quercetin). Cell viability was detected using CCK-8 assays; IL-6 secretion levels were measured by ELISA; target gene expression levels were detected by RT-qPCR.   Results  Data mining revealed Astragalus had the highest frequency at 144 occurrences; TCM properties were predominantly cold, sweet, hepatic-targeting, and heat-clearing with detoxifying effects. Network pharmacology analysis identified core substances as quercetin, kaempferol, luteolin, homoisoflavone, and isoleucine. PPI analysis identified core targets as ESR1, IL6, BCL2, JUN, and CASP3. Molecular docking verified strong binding affinity between core substances and targets. GO analysis included positive regulation of gene expression; KEGG enrichment pathways included AGE-RAGE signaling and IL-17 signaling pathways. Experimental verification showed that quercetin intervention increased cell viability (P < 0.05); suppressed IL-6 expression (P < 0.01), and upregulated ESR1, BCL-2 mRNA levels (P < 0.05), and downregulating IL-6, JUN, and CASP3 levels (P < 0.05).   Conclusion  This study elucidated medication patterns for IgAN treatment, identified core therapeutic substances and corresponding targets, and experimentally validated that quercetin enhances cell viability under IgA stimulation, suppresses inflammatory cytokine secretion, and modulates target gene expression, providing valuable insights for investigating molecular mechanisms of IgAN therapy.
  • loading
  • [1]
    Nogales C, Mamdouh Z M, List M, et al. Network pharmacology: Curing causal mechanisms instead of treating symptoms[J]. Trends Pharmacol Sci, 2022, 43(2): 136-150. doi: 10.1016/j.tips.2021.11.004
    [2]
    蔡玉媛, 张荣玲, 侯渊圣, 等. 无症状尿检异常型IgA肾病患者中医证治特点及其对蛋白尿缓解的影响[J]. 暨南大学学报(自然科学与医学版), 2023, 44(1): 60-68. doi: 10.11778/j.jdxb.20220337
    [3]
    李福生, 王茂泓, 吴国庆, 等. 国医大师皮持衡运用三仁泄浊膏化裁治疗慢性肾衰竭经验[J]. 江西中医药, 2024, 55(1): 40-42. doi: 10.20141/j.0411-9584.2024.01.12
    [4]
    刘创, 郑京. 大黄附子灌肠汤治疗慢性肾功能衰竭疗效观察[J]. 现代中西医结合杂志, 2010, 19(12): 1480-1481. doi: 10.3969/j.issn.1008-8849.2010.12.031
    [5]
    欧娇英, 蔡浙毅, 刘琨. 滋阴益肾方治疗IgA肾病的临床观察[J]. 辽宁中医杂志, 2010, 37(2): 296-297. doi: 10.13192/j.ljtcm.2010.02.109.oujy.057
    [6]
    楼妍, 袁军, 付彤飞, 等. 具有免疫抑制的中成药联合西药治疗膜性肾病的网状Meta分析[J]. 世界中医药, 2023, 18(3): 346-354. doi: 10.3969/j.issn.1673-7202.2023.03.009
    [7]
    刘畅, 苑天彤. 近10年难治性特发性膜性肾病临床研究概况[J]. 中医药临床杂志, 2023, 35(2): 404-410. doi: 10.16448/j.cjtcm.2023.0240
    [8]
    Sarafidis P A, Memmos E, Alexandrou M E, et al. Mineralocorticoid receptor antagonists for nephroprotection: Current evidence and future perspectives[J]. Curr Pharm Des, 2018, 24(46): 5528-5536. doi: 10.2174/1381612825666190306162658
    [9]
    Society, A Working Group of the International IgA Nephropathy Network and the Renal Pathology, Cattran D C, Coppo R, et al. The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification[J]. Kidney Int, 2009, 76(5): 534-545.
    [10]
    谌贻璞. 肾内科学[M]. 2版. 北京: 人民卫生出版社, 2015: 13-18.
    [11]
    国家药典委员会. 中华人民共和国药典[M]. 1部. 北京: 中国医药科技出版社, 2020: 30-451.
    [12]
    钟赣生, 陈蔚文, 赵中振. 中药学[M]. 北京: 中国中医药出版社, 2019: 1-519.
    [13]
    王靖. 基于GO的基因功能及疾病相关通路分析[D]. 成都: 电子科技大学, 2012.
    [14]
    叶凌妍, 吴禹池, 林启展. IgA肾病患者中医证型与临床指标相关性研究[J]. 中医学报, 2024, 39(2): 421-427.
    [15]
    史可, 胡洪贞, 李伟. 四物汤在治疗肾病方面的研究进展[J]. 世界最新医学信息文摘, 2019, 19(8): 61-62. doi: 10.19613/j.cnki.1671-3141.2019.08.027
    [16]
    王泽, 王秋虹, 李晓文, 等. 六味地黄丸治疗糖尿病肾病研究进展[J]. 江苏中医药, 2019, 51(1): 86-89. doi: 10.70976/j.1008-0805.SZGYGY-2025-0122
    [17]
    唐靖怡, 张娉娜, 姜玉华, 等. 小柴胡汤群方在肾脏病中的临床应用[J]. 吉林中医药, 2022, 42(9): 1016-1020.
    [18]
    方芦炜, 马红珍, 丁越越, 等. 黄芪提取物介导VEGF/PI3K/AKT信号通路减缓高糖足细胞损伤的机制研究[J]. 浙江中西医结合杂志, 2025, 35(6): 514-518+528. doi: 10.3969/j.issn.1005-4561.2025.06.005
    [19]
    Chen T, Chen H, Cheng Y, et al. Integrated network toxicology and experimental validation reveal the mechanism of bisphenol A-induced kidney injury: Targeting macrophage Esr1 expression and apoptosis[J]. J Biochem Mol Toxicol, 2025, 39(7): e70348. doi: 10.1002/jbt.70348
    [20]
    Zhang L, Xu F, Hou L. IL-6 and diabetic kidney disease[J]. Front Immunol, 2024, 15: 1465625. doi: 10.3389/fimmu.2024.1465625
    [21]
    Miyake T, McDermott J C. Nucleolar localization of c-Jun[J]. FEBS J, 2022, 289(3): 748-765.
    [22]
    Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414. doi: 10.1080/15548627.2022.2084862
    [23]
    Li Y, Yuan Y, Huang Z X, et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy[J]. Cell Death Differ, 2021, 28(8): 2333-2350. doi: 10.1038/s41418-021-00755-6
    [24]
    Pathomthongtaweechai N, Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy[J]. Biomed Pharmacother, 2020, 131: 110655. doi: 10.1016/j.biopha.2020.110655
    [25]
    Kitching A R, Holdsworth S R. The emergence of TH17 cells as effectors of renal injury[J]. J Am Soc Nephrol, 2011, 22(2): 235-238. doi: 10.1681/ASN.2010050536
    [26]
    Gao F, He X, Liang S, et al. Quercetin ameliorates podocyte injury via inhibition of oxidative stress and the TGF-β1/Smad pathway in DN rats[J]. RSC Adv, 2018, 8(62): 35413-35421. doi: 10.1039/C8RA07935H
    [27]
    Verma S, Dutta A, Dahiya A, et al. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling[J]. Phytomedicine, 2022, 99: 154004. doi: 10.1016/j.phymed.2022.154004
    [28]
    姜一凡, 李小荣, 耿嘉逸, 等. 槲皮素通过抑制HMGB1/RAGE/NF-κB信号通路减轻糖尿病引起的大鼠肾脏损伤[J]. 南方医科大学学报, 2024, 44(9): 1769-1775.
    [29]
    孟德森, 靳英丽. 槲皮素治疗糖尿病肾病的作用机制研究进展[J]. 实用药物与临床, 2024, 27(2): 133-138. doi: 10.14053/j.cnki.ppcr.202402012
    [30]
    王兴红, 孙静, 马永超, 等. 槲皮素对糖尿病肾病小鼠肾脏P2X7R/NLRP3信号通路和纤维化的影响[J]. 中药药理与临床, 2023, 39(6): 48-53. doi: 10.13412/j.cnki.zyyl.20230525.003
    [31]
    宋泽宇, 李振元, 潘涛, 等. 槲皮素对阿霉素所致肾病综合征大鼠的保护作用及机制[J]. 山东科学, 2023, 36(4): 61-68. doi: 10.3976/j.issn.1002-4026.2023.04.008
  • Relative Articles

    [1] Xiaoyu YANG, Bo LI, Rui ZHENG, Min SU. Molecular Docking-Based Screening and Activity Studies of NDM-1 β-Lactamase Inhibitors against Klebsiella pneumoniae. Journal of Kunming Medical University,
    [2] Lirong GUO, Xiang LIU, Jiahao LI, Ying ZHANG. Predicting Active Components of Chinese Herbal Medicines for Treating Bone Aging Based on Reverse Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,
    [3] Qinglan PENG, Jialu LUO, Jiayi YU, Kaixin WANG, Fang WU, Chuanzhi XU. Signal Mining and Analysis of Adverse Events of Azithromycin Based FAERS Database. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250103
    [4] Liyue REN, Mingzhi ZHAO, Sijie WANG, Qin LIU, Jiajia LIU. Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250907
    [5] Hongxiu YANG, Zhongshan ZHU. Effect of HPRT1 Gene Expression on Overall Survival of Patients with Lung Adenocarcinoma. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240803
    [6] Yanhong YANG, Juan HE, Shan JIN, Piaopiao YE, Xin LI, Li QIAO. Prediction of Psoriasis and Potential Treatment of Traditional Chinese Medicine Based on Reverse Network Pharmacology Analysis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20241207
    [7] Jingshan CHEN, Li LI, Shili SHANG, Guoyong HE, Wenjing ZHOU, Sha LI, Di ZHANG, Yonglan LIU, Jun LI. Correlation Analysis between Pathological Features of IgA Nephropathy and Dyslipidemia. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230111
    [8] Shaoyou DENG, Rong LI, Jintao LI, Yulan ZHAO, Peijin WANG, Hong ZHENG. Mechanism of Osteoking Improving Osteoarthritis based on Network Pharmacology and DDM Rats. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230701
    [9] Ranxi SHI, Tao YANG, Qing CHENG, Liangchen ZHAO, Jiahui GUO, Limei WANG. Mechanism of Dendrobium Officinale Against Inflammatory Aging Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20231101
    [10] Hualei DAI, Chengcheng HU, Guimin ZHANG, Siming TAO, Jiankun CHEN. Screening Biomarkers of Astragalus Membranaceus for Hypertensive Ventricular Remodeling Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230819
    [11] Zhongshan ZHU, Zhou YANG, Chengchuan JIANG, Xiaobing LI, Dou REN, Cheng HUANG, Weiwei ZHANG, Xiangjun LI, Shunli ZHAO. An Analysis of PLA2G1B Expression and Prognosis in Patients with Lung Adenocarcinoma. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220912
    [12] Li ZHANG, Yuting WANG, Jianing SHI, Dan YU, Renhua YANG, Zhiqiang SHEN, Jiang LONG, Peng CHEN. Network Pharmacology-based Analysis of the Anti-atherosclerosis Mechanism of Scutellarin and Experimental Validation in Vivo. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220804
    [13] Wang Ji Yan , Duan Yong . . Journal of Kunming Medical University,
    [14] Yuan Jing Jing , Lv Qin , Zhou Xiao Ping . . Journal of Kunming Medical University,
    [15] Ma Jia Qing , Luo Hai Yun , Yang Yong , Li Chen , Yun Yu , Yang Jian Yu . Application and Evaluation of Combination of PBL/CBL/TBL Teaching Method in Anesthetic Pharmacology Experiment. Journal of Kunming Medical University,
    [16] Huang Ning . . Journal of Kunming Medical University,
    [17] Wang Fang . . Journal of Kunming Medical University,
    [18] Rui Zhang Ru . . Journal of Kunming Medical University,
    [19] Yang Gui Mei . . Journal of Kunming Medical University,
    [20] . Effect Evaluation on Reform of Pharmacological Experimental Teaching. Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (195) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return