| Citation: | Zhijie CHENG, Ruijing ZUO, Huanhuan LI, Linxia WU, Minchen KAN, Qianqian WANG. Intervention Mechanism of miR-155 in Macrophage-Derived Exosomes from Sepsis Patients on Endothelial Cell Ferroptosis[J]. Journal of Kunming Medical University. |
| [1] |
Sim J, Soo H, Young K, et al. Prediction of culture-positive sepsis and selection of empiric antibiotics in critically ill patients with complicated intra-abdominal infections: A retrospective study[J]. Eur J Trauma Emerg Surg, 2022, 48(2): 963-971. doi: 10.1007/s00068-020-01535-6
|
| [2] |
Villar J, Herrán-Monge R, González-Higueras E, et al. Clinical and biological markers for predicting ARDS and outcome in septic patients[J]. Sci Rep, 2021, 11(1): 22702. doi: 10.1038/s41598-021-02100-w
|
| [3] |
Auriemma C L, Zhuo H, Delucchi K, et al. Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis[J]. Intensive Care Med, 2020, 46(6): 1222-1231. doi: 10.1007/s00134-020-06010-9
|
| [4] |
Xu C, Zheng L, Jiang Y, et al. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: A retrospective cohort study[J]. BMC Pulm Med, 2023, 23(1): 78. doi: 10.1186/s12890-023-02365-z
|
| [5] |
Tao H, Xu Y, Zhang S. The role of macrophages and alveolar epithelial cells in the development of ARDS[J]. Inflammation, 2023, 46(1): 47-55. doi: 10.1007/s10753-022-01726-w
|
| [6] |
Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients[J]. EBioMedicine, 2020, 57: 102833. doi: 10.1016/j.ebiom.2020.102833
|
| [7] |
Feng Z, Zhou J, Liu Y, et al. Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response[J]. Cell Death Differ, 2021, 28(7): 2238-2256. doi: 10.1038/s41418-021-00750-x
|
| [8] |
Sun H, Gao W, Chen R, et al. CircRNAs in BALF exosomes and plasma as diagnostic biomarkers in patients with acute respiratory distress syndrome caused by severe pneumonia[J]. Front Cell Infect Microbiol, 2023, 13: 1194495. doi: 10.3389/fcimb.2023.1194495
|
| [9] |
Kaur G, Maremanda K P, Campos M, et al. Distinct exosomal miRNA profiles from BALF and lung tissue of COPD and IPF patients[J]. Int J Mol Sci, 2021, 22(21): 11830. doi: 10.3390/ijms222111830
|
| [10] |
Ahmad F M, A Al-Binni M, Bani Hani A, et al. Complement terminal pathway activation is associated with organ failure in sepsis patients[J]. J Inflamm Res, 2022, 15: 153-162. doi: 10.2147/JIR.S344282
|
| [11] |
Ranieri V M, Rubenfeld G D, Thompson B T, et al. Acute respiratory distress syndrome: The Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533.
|
| [12] |
Kono M, Miyashita K, Hirama R, et al. Prognostic significance of bronchoalveolar lavage cellular analysis in patients with acute exacerbation of interstitial lung disease[J]. Respir Med, 2021, 186: 106534. doi: 10.1016/j.rmed.2021.106534
|
| [13] |
Sim J, Soo H, Young K, et al. Prediction of culture-positive sepsis and selection of empiric antibiotics in critically ill patients with complicated intra-abdominal infections: A retrospective study[J]. Eur J Trauma Emerg Surg, 2022, 48(2): 963-971. doi: 10.1007/s00068-020-01535-6
|
| [14] |
Weber B, Henrich D, Marzi I, et al. Decrease of exosomal miR-21-5p and the increase of CD62p+ exosomes are associated with the development of sepsis in polytraumatized patients[J]. Mol Cell Probes, 2024, 74: 101954. doi: 10.1016/j.mcp.2024.101954
|
| [15] |
Liu F, Peng W, Chen J, et al. Exosomes derived from alveolar epithelial cells promote alveolar macrophage activation mediated by miR-92a-3p in sepsis-induced acute lung injury[J]. Front Cell Infect Microbiol, 2021, 11: 646546. doi: 10.3389/fcimb.2021.646546
|
| [16] |
Wang Z F, Yang Y M, Fan H. Diagnostic value of miR-155 for acute lung injury/acute respiratory distress syndrome in patients with sepsis[J]. J Int Med Res, 2020, 48(7): 0300060520943070.
|
| [17] |
Cai W, Shen K, Ji P, et al. The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species[J]. Burns Trauma, 2022, 10: tkac008. doi: 10.1093/burnst/tkac008
|
| [18] |
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury[J]. Front Immunol, 2023, 14: 1209438. doi: 10.3389/fimmu.2023.1209438
|
| [19] |
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y
|
| [20] |
Dong L, Yin L, Li R, et al. Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation[J]. Eur J Pharmacol, 2021, 908: 174321.
|
| [21] |
Canton M, Sánchez-Rodríguez R, Spera I, et al. Reactive oxygen species in macrophages: Sources and targets[J]. Front Immunol, 2021, 12: 734229. doi: 10.3389/fimmu.2021.734229
|
| [22] |
Zhang L, Gao J, Qin C, et al. Inflammatory alveolar macrophage-derived microvesicles damage lung epithelial cells and induce lung injury[J]. Immunol Lett, 2022, 241: 23-34. doi: 10.1016/j.imlet.2021.10.008
|
| [23] |
Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo[J]. Cell Rep, 2020, 32(2): 107881. doi: 10.1016/j.celrep.2020.107881
|
| [24] |
Hu J, Huang S, Liu X, et al. miR-155: An important role in inflammation response[J]. J Immunol Res, 2022, 2022: 7437281. doi: 10.1155/2022/7437281
|
| [25] |
Liu Z Q, Feng J, Shi L L, et al. Influences of miR-155/NF-κB signaling pathway on inflammatory factors in ARDS in neonatal pigs[J]. Eur Rev Med Pharmacol Sci, 2019, 23(16): 7042-7048.
|
| [26] |
Haroun R A, Osman W H, Amin R E, et al. Circulating plasma miR-155 is a potential biomarker for the detection of SARS-CoV-2 infection[J]. Pathology, 2022, 54(1): 104-110. doi: 10.1016/j.pathol.2021.09.006
|
| [27] |
Kutsenko V A, Dashkova D A, Ruksha T G. Inhibition of the expression of NRF2 transcription factor mediated by miR-155 causes a decrease in the viability of melanoma cells regardless of redox status[J]. Cell Tiss Biol, 2024, 18(3): 307-313. doi: 10.1134/S1990519X2470024X
|
| [28] |
Yan R, Lin B, Jin W, et al. NRF2, a superstar of ferroptosis[J]. Antioxidants, 2023, 12(9): 1739.
|
| [1] | Xiaoxia SHEN, Xiaodong ZHAO, Yongjian SONG. SIRT1 Agonist Treatment of Mice with Coronary Artery Disease Improves Myocardial Function by modulating Nrf2-GPX4 Ferroptosis Pathway. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250507 |
| [2] | Xiaoxia DONG, Shuxian CHEN. Study on the Mechanism by Which GPX4 Expression Promotes Ferroptosis and Participates in Malignant Behavior of Endometrial Carcinoma. Journal of Kunming Medical University, |
| [3] | Ruifeng QIN, Jiadong XUE, Jia ZHANG, Fan LIU, Shaohui ZHANG, Liyang YIN, Zengjiang YUAN. Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20251005 |
| [4] | Xinyuan XIE, Xiaochen NIU, Jianhui SUN, Yahan ZHANG, Pengfei CHEN. Ferroptosis-Related LncRNAs Signature Predicts the Prognosis of Stomach Adenocarcinoma. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250407 |
| [5] | Liuzheng LI, Leisheng XU, Kanghong LUO, Mingting ZHANG, Yan WANG, Xuechang GAO, Jiawei FENG, Guocha GONG. Effect of SLC7A11 Gene on Progression of Hepatocellular Carcinoma by Regualating Iron Death Pathway. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20251004 |
| [6] | Xiaoxia SHEN, Chunhui FENG, Xiaodong ZHAO. Effects of Stem Cells on Myocardial Infarction Repair and Cardiac Electrophysiology Based on Exosomal STAT3 Protein Transport. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20251207 |
| [7] | Xiaoling TANG, Bangfang XIE, Hailong HUANG. Exosomal Mir-210-3p Promotes Chemoresistance and Stem Cell Properties in Cervical Cancer by Targeting FBXO31. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250707 |
| [8] | Chunyu ZHANG, Jian LUO, Qi ZHOU. miR-147a Regulates Ferroptosis and Affects Invasion and Metastasis of Cervical Cancer Cells. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20251006 |
| [9] | Wei LI, Lihong JIANG, Lijing MA, Rui CHEN, Tongshuo YANG. Research Progress of Iron Death in Cardiomyopathy. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240327 |
| [10] | Lei ZHU, Ruixue LI, Changlei BAO, Chenchen HUANG, Shuxin LIANG, Zhenlin ZHAO, Hong ZHU. Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240206 |
| [11] | Maimaitizunong Rezeye, Xiujuan LI, Ling LIU, Hui LI. Effects of Ferroptosis Inhibitor KIF20A on Biological Behavior and Ferroptosis of Esophageal Carcinoma Cells. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240207 |
| [12] | Shijie CAO, Hongwei AN. Mechanism and Progress of MSC Derived Extracellular Vesicles in the Treatment of Ischemic Stroke. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230913 |
| [13] | Dong WANG, Bibo GAO, Huiying SUN, Denghui LENG, Xiaoping RAN, Wen LIN. miR-216b-5p Promotes Ferroptosis in Glioblastoma Cells by Targeting NCOA3. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230805 |
| [14] | Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. M2 Macrophage-derived Exosome miR-1246 Regulates the Growth and Invasion of Gastric Cancer Cells. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230724 |
| [15] | Tianhong ZHANG, Hongju YANG. Research Progress of Exosomal miRNA in Hepatocellular Carcinoma. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220221 |
| [16] | Li-ya MA, Nan-quan RAO, He-feng YANG. Research Progress of Mesenchymal Stem Cell Exosomes in Oral Tissue Regeneration. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210527 |
| [17] | Xiao CAI, Xue-tao YI, Jing-qing YAO, Xin-yu DAI, Zhong-quan TANG, Ting OU, Xiao-min ZHAO, Yun-tao LI. The Regulation of Exosome Derived from Human Bone Marrow Mesenchymal Stem Cells on the Polarization of Glioma-associated Macrophages. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210101 |
| [18] | Wei Han Xiao , Zhang Ai Jun , Li Qiang , Jin Pei Sheng . . Journal of Kunming Medical University, |
| [19] | Yu Xiao Dong , Long Jiang . . Journal of Kunming Medical University, |
| [20] | Jia Feng Mei , Yin Shun Hui , Ran Li Quan , Tian Ming Tong , Zhang Ming Zhu . . Journal of Kunming Medical University, |