Turn off MathJax
Article Contents
Libo RUAN, Kewang XU, Minjun ZHAO, Fan ZHANG, Wenjun ZENG, Haiyan ZHANG. PCK2 Promotes Malignant Phenotypes of Non-Small Cell Lung Cancer Cells via SLC38A2-Mediated Glutamine Uptake[J]. Journal of Kunming Medical University.
Citation: Libo RUAN, Kewang XU, Minjun ZHAO, Fan ZHANG, Wenjun ZENG, Haiyan ZHANG. PCK2 Promotes Malignant Phenotypes of Non-Small Cell Lung Cancer Cells via SLC38A2-Mediated Glutamine Uptake[J]. Journal of Kunming Medical University.

PCK2 Promotes Malignant Phenotypes of Non-Small Cell Lung Cancer Cells via SLC38A2-Mediated Glutamine Uptake

  • Received Date: 2025-08-25
  • To investigate the molecular mechanism by which phosphoenolpyruvate carboxykinase 2 (PCK2) regulates glutamine transport under low-glucose conditions and its impact on the malignant behaviors of non-small cell lung cancer (NSCLC) cells. Methods: Stable PCK2 knockdown (KD group) and negative control (NC group) cell lines (n = 3 for all experiments) were established in the human NSCLC A549 cell line.. The impact of PCK2 on the transcription and protein expression of solute carrier family 38 member 2 (SLC38A2) were assessed using PRM proteomics, Western blotting, and dual-luciferase reporter assays. Cell proliferation (MTT), migration (wound healing), and apoptosis (flow cytometry) were analyzed via MTT assay, scratch wound healing assay, and flow cytometry, respectively under low-glucose conditions (1000 mg/L). Functional rescue experiments were performed by establishing a Gln supplementation group (KD+Gln group) and an SLC38A2 overexpression group (KD+SLC38A2 group). Results: Upon PCK2 knockdown, SLC38A2 promoter activity decreased by approximately 60% (P < 0.0001) and its protein expression was significantly reduced (P < 0.01). Under low-glucose conditions, cell proliferation was inhibited in the KD group. The 24-hour migration rate (≈20%) was significantly lower than that in the NC group (≈55%, P < 0.0001), while the apoptosis rate (≈13%) was significantly higher (NC group ≈4.5%, P < 0.0001). Both glutamine supplementation and SLC38A2 overexpression significantly reversed these phenomena, restoring migration rates to approximately 50% (P < 0.01 vs. KD) and reducing apoptosis to about 5.5% (P < 0.0001 vs. KD). Conclusion: Under low-glucose stress, PCK2 maintains Gln uptake by regulating SLC38A2 expression at the transcriptional level, thereby promoting the proliferation, migration, and survival of NSCLC cells. The PCK2-SLC38A2 axis unveils a novel mechanism in tumor metabolic reprogramming and may represent a potential therapeutic target for NSCLC.
  • loading
  • [1]
    Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
    [2]
    Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075. doi: 10.1016/S0140-6736(17)33326-3
    [3]
    胡婷婷, 鲁洪岭, 刘倩, 等. 非小细胞肺癌患者血清s Tim-3和SPINK1水平与三维适形放疗效果及预后的关系[J]. 贵州医科大学学报, 2024, 49(03): 417-422. doi: 10.19367/j.cnki.2096-8388.2024.03.014
    [4]
    刘玲玲, 王琴容, 苟铉婧, 等. hnRNPK对非小细胞肺癌增殖、迁移、侵袭的作用及其机制[J]. 贵州医科大学学报, 2025, 50(05): 649-658. doi: 10.19367/j.cnki.2096-8388.2025.05.003
    [5]
    Pavlova N N, Zhu J, Thompson C B. The hallmarks of cancer metabolism: Still emerging[J]. Cell Metab, 2022, 34(3): 355-377. doi: 10.1016/j.cmet.2022.01.007
    [6]
    Vanhove K, Derveaux E, Graulus G J, et al. Glutamine Addiction and Therapeutic Strategies in Lung Cancer[J]. Int J Mol Sci, 2019, 20(2): 252. doi: 10.3390/ijms20020252
    [7]
    Lee J S, Kang J H, Lee S H, et al. Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC[J]. Cell Death Dis, 2016, 7(12): e2511. doi: 10.1038/cddis.2016.404
    [8]
    Zhao X, Jin L, Liu Y, et al. Bioinformatic analysis of the role of solute carrier-glutamine transporters in breast cancer[J]. Ann Transl Med, 2022, 10(14): 777. doi: 10.21037/atm-22-2620
    [9]
    Hossen M S, Islam M S U, Yasin M, et al. A review on the role of human solute carriers transporters in cancer[J]. Health Sci Rep, 2025, 8(1): e70343. doi: 10.1002/hsr2.70343
    [10]
    Huang M S, Chang J H, Lin W C, et al. SLC38A2 overexpression induces a cancer-like metabolic profile and cooperates with SLC1A5 in pan-cancer prognosis[J]. Chem Asian J, 2020, 15(22): 3861-3872.
    [11]
    李留峥, 徐雷升, 罗康虹, 等. SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响[J]. 昆明医科大学学报, 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004
    [12]
    Gauthier-Coles G, Bröer A, McLeod M D, et al. Identification and characterization of a novel SNAT2 (SLC38A2) inhibitor reveals synergy with glucose transport inhibition in cancer cells[J]. Front Pharmacol, 2022, 13: 963066. doi: 10.3389/fphar.2022.963066
    [13]
    Hyroššová P, Aragó M, Moreno-Felici J, et al. PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner[J]. Cancer Metab, 2021, 9(1): 1. doi: 10.1186/s40170-020-00236-3
    [14]
    Anderson R, Pladna K M, Schramm N J, et al. Pyruvate dehydrogenase inhibition leads to decreased glycolysis, increased reliance on gluconeogenesis and alternative sources of acetyl-CoA in acute myeloid leukemia[J]. Cancers (Basel), 2023, 15(2): 484. doi: 10.3390/cancers15020484
    [15]
    Zhang J, He W, Liu D, et al. Phosphoenolpyruvate carboxykinase 2-mediated metabolism promotes lung tumorigenesis by inhibiting mitochondrial-associated apoptotic cell death[J]. Front Pharmacol, 2024, 15: 1434988. doi: 10.3389/fphar.2024.1434988
    [16]
    Yu S, Meng S, Xiang M, et al. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis[J]. Mol Metab, 2021, 53: 101257. doi: 10.1016/j.molmet.2021.101257
    [17]
    Leithner K, Hrzenjak A, Trötzmüller M, et al. PCK2 activation mediates an adaptive response to glucose depletion in lung cancer[J]. Oncogene, 2015, 34(8): 1044-1050. doi: 10.1038/onc.2014.47
    [18]
    Bluemel G, Planque M, Madreiter-Sokolowski C T, et al. PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells[J]. Free Radic Biol Med, 2021, 176: 34-45. doi: 10.1016/j.freeradbiomed.2021.09.007
    [19]
    Wang B, Pei J, Xu S, et al. Correction: A glutamine tug-of-war between cancer and immune cells: Recent advances in unraveling the ongoing battle[J]. J Exp Clin Cancer Res, 2024, 43(1): 93. doi: 10.1186/s13046-024-03018-7
    [20]
    Nan D, Yao W, Huang L, et al. Glutamine and cancer: Metabolism, immune microenvironment, and therapeutic targets[J]. Cell Commun Signal, 2025, 23(1): 45.
    [21]
    Montal E D, Dewi R, Bhalla K, et al. PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth[J]. Mol Cell, 2015, 60(4): 571-583. doi: 10.1016/j.molcel.2015.09.025
    [22]
    Leithner K. PEPCK in cancer cell starvation[J]. Oncoscience, 2015, 2(10): 805-806. doi: 10.18632/oncoscience.252
    [23]
    Feng H G, Wu C X, Zhong G C, et al. Integrative analysis reveals that SLC38A1 promotes hepatocellular carcinoma development via PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism[J]. J Cancer Res Clin Oncol, 2023, 149(17): 15879-15898. doi: 10.1007/s00432-023-05360-3
    [24]
    Morotti M, Zois C E, El-Ansari R, et al. Increased exp、ression of glutamine transporter SNAT2/SLC38A2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer[J]. Br J Cancer, 2021, 124(2): 494-505. doi: 10.1038/s41416-020-01113-y
    [25]
    Sniegowski T, Rajasekaran D, Sennoune S R, et al. Amino acid transporter SLC38A5 is a tumor promoter and a novel therapeutic target for pancreatic cancer[J]. Sci Rep, 2023, 13(1): 16863. doi: 10.1038/s41598-023-43983-1
    [26]
    Meijer T W H, Looijen-Salamon M G, Lok J, et al. Glucose and glutamine metabolism in relation to mutational status in NSCLC histological subtypes[J]. Thorac Cancer, 2019, 10(12): 2289-2299. doi: 10.1111/1759-7714.13226
    [27]
    Bott A J, Maimouni S, Zong W X. The pleiotropic effects of glutamine metabolism in cancer[J]. Cancers (Basel), 2019, 11(6): 770. doi: 10.3390/cancers11060770
    [28]
    石国一, 刘玉玲, 王敏. VEGF、HIF-1α、COX-2在非小细胞肺癌中的表达及意义[J]. 河北医科大学学报, 2016, 37(03): 256-259.
    [29]
    张洪珍, 杨圣俊, 臧玉芹, 等. 非小细胞肺癌中HIF-1α和Vimentin的表达及其临床意义[J]. 河北医科大学学报, 2018, 39(06): 628-631+635. doi: 10.3969/j.issn.1007-3205.2018.06.003
    [30]
    徐益多, 周彦琪, 王健, 等. S100A9-RAGE/TLR4信号轴调控非小细胞肺癌脑转移和内皮黏附的作用[J]. 昆明医科大学学报, 2025, 46(09): 23-36.
    [31]
    Rubio-Aliaga I, Wagner C A. Regulation and function of the SLC38A3/SNAT3 glutamine transporter[J]. Channels (Austin), 2016, 10(6): 440-452. doi: 10.1080/19336950.2016.1207024
  • Relative Articles

    [1] Shengxi YANG, Jiade ZHU, Qiurui LI, Wenlian TU. Clinical Study of Aumolertinib Versus Osimertinib in the Treatment of EGFR-Mutated Advanced Non-Small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250510
    [2] Yiduo XU, Yanqi ZHOU, Jian WANG, Jiang LONG. Studies on the Role of S100A9-RAGE/TLR4 Signaling Axis in Regulating Brain Metastasis and Endothelial Adhesion of Non-Small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250903
    [3] Yingfu LI, Ni GUO, Zhengguang LUO, Anhao XING, Taifu LI, Qianli MA. Correlation of EGFR Gene Polymorphisms with Non-small Cell Lung Cancer in Yunnan Han Population. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250413
    [4] Yueting YAO, Shuai LI, Yang CAO, Mu LIN, Zhengguang LUO, Xiaobo CHEN, Qianli MA. Correlation between Epidermal Growth Factor Gene Polymorphisms and Non-small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250910
    [5] Huimin YU, Xin XIN, Zhiwei LIANG. Predictive Value of KIAA1199 and Linc00673 Genes on Chemotherapy Efficacy in Non-small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250115
    [6] Caini ZHANG, Ya LI. A Meta-analysis of the Efficacy and Safety of Camrelizumab Combined with Chemotherapy in the Treatment of Non-small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240610
    [7] Chao HONG, Xudong XIANG, Yingfu LI, Yang CAO, Xueya CHEN, Shuai LI, Anhao XING, Mu LIN, Qianli MA. Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240302
    [8] Yan LIANG, Lei WANG, Ming LEI, Benchao CHEN, Ping SUN, Shuai LI, Li LIU, Qianrong WANG, Manlin LIAO, Qianli MA. Correlation between KRAS Gene Polymorphism and Non-small Cell Lung Cancer in Yunnan Han Population. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230210
    [9] Chuntao LI, Xuemei ZHANG, Yandi SU, Jianqing Zhang. Construction of Stable Transfected Cell Line A549 of Non-small Cell Lung Cancer by Overexpressing and Knocking Down LncRNA RP11-521C20.3. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20231016
    [10] Jia YANG, Ya-xian LI, Ying-ying WANG, Lin XIAO, Chuan-yin LI, Fang TAN, Qian-li MA, Shu-yuan LIU. Association of the miR-149,miR-219 and miR-let-7 Polymorphisms with the Occurrence and Development of Non-small Cell Lung Cancer in a Chinese Han Population in Yunnan Province. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20211037
    [11] Ying-xia WANG, Qin HE, Guo-fang WANG, Xuan ZHANG. Expression and Significance of microRNA-21 and EGFR in Non-small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20210818
    [12] Chen Ben Chao , Li Heng , Liu Chao , Wang Shu Ting , Li Gao Feng . . Journal of Kunming Medical University,
    [13] Wang Juan , Su Guo Miao , Pan Guo Qing , Bian Li , Yang Zhe , Zeng Ding Tao . . Journal of Kunming Medical University,
    [14] Xiao-biao MA, Feng LUO, Yong-liang GAO, Jing-chao HAO. Clinical Study of Chemotherapy Combined with CIK Cell Immunotherapy for Non-small Cell Lung Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20201215
    [15] Tang Shi Cong , Pan Hong , Huang Yao Yuan , Zhou Xin , Wang Shou Feng , Zuo Chuan Tian , Mao Nai Quan . . Journal of Kunming Medical University,
    [16] Zhou JieYan . . Journal of Kunming Medical University,
    [17] . Clinical Effects of Double-way Chemotherapy on Non-small Cell Lung Cancer with Malignant Pericardial Effusion. Journal of Kunming Medical University,
    [18] . Relationship between Expression of CDK2 and p27kip1 Protein and Non-small Cell Lung Cancer in Xuanwei. Journal of Kunming Medical University,
    [19] Yang Fang . . Journal of Kunming Medical University,
    [20] Zhang Lan Feng . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (99) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return