Citation: | Jingjing SONG, Wei XIONG, Shuhui YAO, Shuang LIU, Jing ZHANG. Intervention of AKR1C3 on Malignant Biological Behavior of Breast Cancer Cells through PD1/PD-L1 Signaling Pathway[J]. Journal of Kunming Medical University. |
[1] |
张作伟, 吴玉戈, 李贵轩. 乳腺癌组织及细胞系中CCDC34的表达及其生物学功能[J]. 解剖科学进展, 2022, 28(1): 35-38.
|
[2] |
De Rose F, Meduri B, De Santis M C, et al. Rethinking breast cancer follow-up based on individual risk and recurrence management[J]. Cancer Treatment Reviews, 2022, 109: 102434. doi: 10.1016/j.ctrv.2022.102434
|
[3] |
Zhang M, Bai X, Zeng X, et al. circRNA-miRNA-mRNA in breast cancer[J]. Clinica Chimica Acta, 2021, 523: 120-130. doi: 10.1016/j.cca.2021.09.013
|
[4] |
Rios A C, van Rheenen J, Scheele C L G J. Multidimensional Imaging of Breast Cancer[J]. Cold Spring Harbor Perspectives in Medicine, 2023, 13(5): a041330. doi: 10.1101/cshperspect.a041330
|
[5] |
Jokar N, Velikyan I, Ahmadzadehfar H, et al. Theranostic approach in breast cancer: A treasured tailor for future oncology[J]. Clinical Nuclear Medicine, 2021, 46(8): e410-e420. doi: 10.1097/RLU.0000000000003678
|
[6] |
叶思婷. AKR1C3免疫组化表达与肿瘤相关性的Meta分析[D]. 福州: 福建医科大学, 2020.
|
[7] |
Penning T M, Burczynski M E, Jez J M, et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones [J]. Biochemical Journal, 2021, 351(Pt 1): 67-77.
|
[8] |
Zhang Z, Qiu X, Yan Y, et al. Evaluation of ferroptosis-related gene akr1c1 as a novel biomarker associated with the immune microenvironment and prognosis in breast cancer[J]. International Journal of General Medicine, 2021, 14: 6189-6200. doi: 10.2147/IJGM.S329031
|
[9] |
Lee D G, Schuetz J M, Lai A S, et al. Interactions between exposure to polycyclic aromatic hydrocarbons and xenobiotic metabolism genes, and risk of breast cancer[J]. Breast Cancer, 2022, 29(1): 38-49. doi: 10.1007/s12282-021-01279-0
|
[10] |
Vranic S, Cyprian F S, Gatalica Z, et al. PD-L1 status in breast cancer: Current view and perspectives[J]. Seminars in Cancer Biology, 2021, 72: 146-154. doi: 10.1016/j.semcancer.2019.12.003
|
[11] |
Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation[J]. Journal of Hematology & Oncology, 2022, 15(1): 24.
|
[12] |
Hu X, Wang J, Chu M, et al. Emerging role of ubiquitination in the regulation of pd-1/pd-l1 in cancer immunotherapy[J]. Molecular Therapy, 2021, 29(3): 908-919. doi: 10.1016/j.ymthe.2020.12.032
|
[13] |
麻艺群, 汤諹. PI3K/AKT信号通路及AKR1C3在人瘢痕疙瘩形成中的作用机制研究[J]. 中华整形外科杂志, 2022, 38(1): 83-92.
|
[14] |
魏瑜, 李志芳, 曹雷雨, 等. 敲减辅酶Q10B表达对裸鼠食管鳞癌皮下移植瘤细胞增殖、凋亡及上皮间质转化的影响[J]. 山东医药, 2024, 64(28): 40-43.
|
[15] |
Wang S, Xiong Y, Zhang Q, et al. Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa311. doi: 10.1093/bib/bbaa311
|
[16] |
Zhang Y N, Xia K R, Li C Y, et al. Review of breast cancer pathologigcal image processing[J]. BioMed Research International, 2021, 2021: 1994764. doi: 10.1155/2021/1994764
|
[17] |
Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets[J]. Seminars in Cancer Biology, 2020, 60: 14-27. doi: 10.1016/j.semcancer.2019.08.012
|
[18] |
Meng F, Li WF, Jung D, et al. A novel selective AKR1C3-activated prodrug AST-3424/OBI-3424 exhibits broad anti-tumor activity[J]. American Journal of Cancer Research, 2021, 11(7): 3645-3659.
|
[19] |
Liu H, Gao L, Xie T, et al. Identification and validation of a prognostic signature for prostate cancer based on ferroptosis-related genes[J]. Frontiers in Oncology, 2021, 11: 623313. doi: 10.3389/fonc.2021.623313
|
[20] |
Toscan C E, McCalmont H, Ashoorzadeh A, et al. The third generation AKR1C3-activated prodrug, ACHM-025, eradicates disease in preclinical models of aggressive T-cell acute lymphoblastic leukemia[J]. Blood Cancer Journal, 2024, 14(1): 192. doi: 10.1038/s41408-024-01180-x
|
[21] |
Zhou Q, Tian W, Jiang Z, et al. A positive feedback loop of AKR1C3-mediated activation of NF-κB and STAT3 facilitates proliferation and metastasis in hepatocellular carcinoma[J]. Cancer Research, 2021, 81(5): 1361-1374. doi: 10.1158/0008-5472.CAN-20-2480
|
[22] |
Lee O, Fought A J, Shidfar A, et al. Association of genetic polymorphisms with local steroid metabolism in human benign breasts[J]. Steroids, 2022, 177: 108937. doi: 10.1016/j.steroids.2021.108937
|
[23] |
Vogeley C, Sondermann N C, Woeste S, et al. Unraveling the differential impact of PAHs and dioxin-like compounds on AKR1C3 reveals the EGFR extracellular domain as a critical determinant of the AHR response[J]. Environment International, 2022, 158: 106989. doi: 10.1016/j.envint.2021.106989
|
[24] |
Verma K, Gupta N, Zang T, et al. AKR1C3 inhibitor kv-37 exhibits antineoplastic effects and potentiates enzalutamide in combination therapy in prostate adenocarcinoma cells[J]. Molecular Cancer Therapeutics, 2021, 17(9): 1833-1845.
|
[25] |
朱鹏飞. AKR1C3促进肝癌细胞增殖、侵袭和转移的机制研究[D]. 郑州: 郑州大学, 2022.
|
[26] |
Voabil P, de Bruijn M, Roelofsen L M, et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer[J]. Nature Medicine, 2021, 27(7): 1250-1261. doi: 10.1038/s41591-021-01398-3
|
[27] |
Munari E, Mariotti F R, Quatrini L, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects[J]. International Journal of Molecular Sciences, 2021, 22(10): 5123. doi: 10.3390/ijms22105123
|
[28] |
Sugiura D, Okazaki I M, Maeda T K, et al. PD-1 agonism by anti-CD80 inhibits T cell activation and alleviates autoimmunity[J]. Nature Immunology, 2022, 23(3): 399-410. doi: 10.1038/s41590-021-01125-7
|
[29] |
Helou D G, Quach C, Fung M, et al. Human PD-1 agonist treatment alleviates neutrophilic asthma by reprogramming T cells[J]. Journal of Allergy and Clinical Immunology, 2023, 151(2): 526-538. e8.
|
[30] |
Ge Z, Zhou G, Campos Carrascosa L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating cd8+ t cells in hepatocellular carcinoma[J]. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12(2): 443-464. doi: 10.1016/j.jcmgh.2021.03.003
|
[31] |
Ledys F, Kalfeist L, Galland L, et al. Therapeutic associations comprising anti-PD-1/PD-L1 in breast cancer: clinical challenges and perspectives[J]. Cancers, 2021, 13(23): 5999. doi: 10.3390/cancers13235999
|
[32] |
Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer[J]. Nature Medicine, 2021, 27(5): 820-832. doi: 10.1038/s41591-021-01323-8
|
[33] |
Jin M, Fang J, Peng J, et al. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies[J]. Molecular Cancer, 2024, 23(1): 266. doi: 10.1186/s12943-024-02176-8
|
[34] |
Song Y, Bugada L, Li R, et al. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice[J]. Science Translational Medicine, 2022, 14(643): eabl3649. doi: 10.1126/scitranslmed.abl3649
|
[35] |
Hammerl D, Martens J W M, Timmermans M, et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer[J]. Nature Communications, 2021, 12(1): 5668. doi: 10.1038/s41467-021-25962-0
|
[1] | Yiran YAN, Chengwan SHEN, Xiangyu SHANG, Chan FENG, Jinqiu LI, Hasim AXIANGU. Galangin Inhibits the Migration and Invasion of Cervical Cancer Hela Cells Through Hippo/YAP Pathway. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250105 |
[2] | Yanping LI, Xiaolin¹ DONG, Qingyun LI, Hongmei LI, Huan WEI, Yi ZENG. miR-21-5p Alleviates OGD/R-induced Inflammation and Apoptosis of HT22 Cells and Promotes Proliferation by Inhibiting STAT3. Journal of Kunming Medical University, |
[3] | Zhuohui LIU, Shiyin QIN, Hexiang ZHAO, Fengfeng JIA, Biao RUAN, Ruiqing LONG. Inhibitory Effect of Crocin on Pituitary Adenomas via IRF7/NF-κB Signaling Pathway. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20241203 |
[4] | Xiangchuan QIN, Jinqiu LI, Xiaojing HUANG, Kuerban HUTUBIDING·, Hasim AXIANGU·. Effect of HPV E6 on Proliferation,Invasion and Migration of Cervical Cancer Cells Through Rap1 Signaling Pathway. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240902 |
[5] | Weimin LIU, Yiqun MA, Zhuo TIAN, Yang TANG. Regulatory Role of PI3K/Akt Signaling Pathway in Hypertrophic Scar. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230313 |
[6] | Tao HU, Yi WU, Wenda GENG, Yijian ZHANG, Xuan HE, Shanshan LI, Yanbin XIYANG, Liling DENG. Voluntary Exercise Training Attenuated the Proliferation and Growth of Human Breast Cancer with BRCA1 Mutation by Regulating Caspase-3 Activity. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230419 |
[7] | Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230926 |
[8] | Bing CAI, Wei ZHANG, Jing LIU, Yi LIU. miR-218-5p Inhibits the Development of Colon Cancer by Regulating LAYN. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20231206 |
[9] | Dongxing XU, Bo TANG, Guo ZHU, Xuefen LEI, Qiuhong WANG, Dong WEI. Effect and Mechanism of Twist1 Regulating Bmi1 on Invasion and Migration of Gallbladder Carcinoma Cells. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230320 |
[10] | Zhoujun LIAO, Shaohua YANG, Lixin LIU, Sheng HU, Yihui CHEN, Qiang KANG, Xiaowen ZHANG. Effect of AK4 on Proliferation and Migration of Intrahepatic Bile Duct Carcinoma Cell HUCCT1. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220611 |
[11] | Bin ZHAO, Yuanpeng DUAN, Guoying ZHANG, Chengwei BI, Libo YANG, Zhiyu SHI, Yong YANG, Jianpeng ZHANG, Ting GAO. CircRNA EZH2 Promotes Proliferation and Migration of Prostate Cancer Cells by Regulating miR-30c-5p. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220731 |
[12] | Lan YANG, Xiao JIA, Yi-tong JIANG, Qi CUI, Guang-ci LIU, Ying-hong HE. The Effect of Silencing of UBE2C Gene on the Proliferation and Migration of Human Gastric Cancer AGS Cells. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210504 |
[13] | Jian-wei SUN, Qian XIANG, Zi-chao LIU, Shan-shan XU, Ding DING. Effect of PTEN Gene Expression on Apoptosis of Thyroid Cancer Cells BCPAP and FTC133 and Expression of ERK and AKT. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210805 |
[14] | Ai-ping XU, Hua LIN, Li-hui GAO, Ling LI, Meng-wei CHENG, Ge WANG, Juan YANG, Yan-fen NIU. Effect of Norathyriol on the Epithelial-mesenchymal Transition of HK-2 Cells Induced by TGF-β1. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210701 |
[15] | Li Shan Shan , Quan Yu Hang , Gong Ling Li , Yang Hui , Pu Jing Hong , Wang Zhong Hui . . Journal of Kunming Medical University, |
[16] | Liang Nai Chao . Correlation between Expression of MMP-9, TIMP-1 and VEGF and the Invasion of Non Small Cell Lung Cancer. Journal of Kunming Medical University, |
[17] | Liu Li Xin . . Journal of Kunming Medical University, |
[18] | Shi Zhao Kun . . Journal of Kunming Medical University, |
[19] | Liu Jia Xin . . Journal of Kunming Medical University, |
[20] | . Influence of Hypoxia on Hepatoma Carcinoma Cell Line SMMC7721 in Vitro. Journal of Kunming Medical University, |