| Citation: | Zirong MA, Shaochuan ZHANG, Xue CAO, Yutao WANG, Qingrong LI. Neuroinflammatory Biomarkers and Related Pharmacological Treatment in Alzheimer's Disease[J]. Journal of Kunming Medical University. |
| [1] |
Shi F D, Wee Y. Neuroinflammation across neurological diseases[J]. Science, 2025, 388(6753): eadx0043. doi: 10.1126/science.adx0043
|
| [2] |
周艳星, 肖小华, 梁春华, 等. 阿尔茨海默病相关神经炎症在疾病早期诊断中的研究进展[J]. 阿尔茨海默病及相关病, 2024, 7(2): 134-141.
|
| [3] |
张隽, 张兰. 阿尔茨海默病神经炎症分子信号通路及相关抗炎药物研究进展[J]. 临床药物治疗杂志, 2025, 23(2): 5-9.
|
| [4] |
Arnsten A F T, Del Tredici K, Barthélemy N R, et al. An integrated view of the relationships between amyloid, tau, and inflammatory pathophysiology in Alzheimer’ s disease[J]. Alzheimers Dement, 2025, 21(8): e70404.
|
| [5] |
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here[J]. Nat Rev Neurol, 2021, 17(3): 157-172. doi: 10.1038/s41582-020-00435-y
|
| [6] |
陈凯丽, 李海琦, 王俏丽, 等. 阿尔茨海默病中神经炎症相关生物标志物的研究进展[J]. 中国实验诊断学, 2023, 27(1): 89-92. doi: 10.3969/j.issn.1007-4287.2023.01.025
|
| [7] |
Klyucherev T O, Olszewski P, Shalimova A A, et al. Advances in the development of new biomarkers for Alzheimer’ s disease[J]. Transl Neurodegener, 2022, 11(1): 25. doi: 10.1186/s40035-022-00296-z
|
| [8] |
Jack C R, Andrews S J, Beach T G, et al. Revised criteria for the diagnosis and staging of Alzheimer’ s disease[J]. Nat Med, 2024, 30(8): 2121-2124. doi: 10.1038/s41591-024-02988-7
|
| [9] |
Gogishvili D, Honey M I J, Verberk I M W, et al. The GFAP proteoform puzzle: How to advance GFAP as a fluid biomarker in neurological diseases[J]. J Neurochem, 2025, 169(1): e16226. doi: 10.1111/jnc.16226
|
| [10] |
Phillips J M, Winfree R L, Seto M, et al. Pathologic and clinical correlates of region-specific brain GFAP in Alzheimer’ s disease[J]. Acta Neuropathol, 2024, 148(1): 69. doi: 10.1007/s00401-024-02828-5
|
| [11] |
Cicognola C, Janelidze S, Hertze J, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment[J]. Alzheimers Res Ther, 2021, 13(1): 68. doi: 10.1186/s13195-021-00804-9
|
| [12] |
Oeckl P, Anderl-Straub S, Von Arnim C A F, et al. Serum GFAP differentiates Alzheimer’ s disease from frontotemporal dementia and predicts MCI-to-dementia conversion[J]. J Neurol Neurosurg Psychiatry, 2022: jnnp-2021-328547.
|
| [13] |
Guo Y, You J, Zhang Y, et al. Plasma proteomic profiles predict future dementia in healthy adults[J]. Nat Aging, 2024, 4(2): 247-260. doi: 10.1038/s43587-023-00565-0
|
| [14] |
Bandara E M S, Asih P R, Pedrini S, et al. The role of glial fibrillary acidic protein in the neuropathology of Alzheimer’ s disease and its potential as a blood biomarker for early diagnosis and progression[J]. Mol Neurobiol, 2025, 62(12): 15576-15608. doi: 10.1007/s12035-025-05219-3
|
| [15] |
Liu K, Wu L, Yuan S, et al. Structural basis of CXC chemokine receptor 2 activation and signalling[J]. Nature, 2020, 585(7823): 135-140. doi: 10.1038/s41586-020-2492-5
|
| [16] |
Wojcieszak J, Kuczyńska K, Zawilska J B. Role of chemokines in the development and progression of Alzheimer’ s disease[J]. J Mol Neurosci, 2022, 72(9): 1929-1951. doi: 10.1007/s12031-022-02047-1
|
| [17] |
Chidambaram H, Das R, Chinnathambi S. Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation[J]. Cell Biosci, 2020, 10: 109.
|
| [18] |
Bahaabadi Z J, Javid-Naderi M J, Kesharwani P, et al. A review on biosensors for quantification of MCP-1 as a potential biomarker in diseases[J]. Immunology, 2025, 175(4): 419-433. doi: 10.1111/imm.13944
|
| [19] |
Yuan H, Lu B, Sun D, et al. CCL2 inhibitor bindarit improve postoperative cognitive function by attenuating pericyte loss-related blood-brain barrier disruption and neuroinflammation[J]. Mediators Inflamm, 2025, 2025: 7248780.
|
| [20] |
Lee W J, Liao Y C, Wang Y F, et al. Plasma MCP-1 and cognitive decline in patients with Alzheimer’ s disease and mild cognitive impairment: A two-year follow-up study[J]. Sci Rep, 2018, 8(1): 1280. doi: 10.1038/s41598-018-19807-y
|
| [21] |
Huang J, Stein T D, Wang Y, et al. Blood levels of MCP-1 modulate the genetic risks of Alzheimer’ s disease mediated by HLA-DRB1 and APOE for Alzheimer’ s disease[J]. Alzheimers Dement, 2023, 19(5): 1925-1937.
|
| [22] |
Wang T, Yao Y, Han C, et al. MCP-1 levels in astrocyte-derived exosomes are changed in preclinical stage of Alzheimer’ s disease[J]. Front Neurol, 2023, 14: 1119298. doi: 10.3389/fneur.2023.1119298
|
| [23] |
Janelidze S, Mattsson N, Stomrud E, et al. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease[J]. Neurology, 2018, 91(9): e867-e877. doi: 10.1212/wnl.0000000000006082
|
| [24] |
Nordengen K, Kirsebom B E, Henjum K, et al. Glial activation and inflammation along the Alzheimer’ s disease continuum[J]. J Neuroinflammation, 2019, 16(1): 46. doi: 10.1186/s12974-019-1399-2
|
| [25] |
Zhou F, Sun Y, Xie X, et al. Blood and CSF chemokines in Alzheimer’ s disease and mild cognitive impairment: A systematic review and meta-analysis[J]. Alzheimers Res Ther, 2023, 15(1): 107. doi: 10.1186/s13195-023-01254-1
|
| [26] |
Krauthausen M, Kummer M P, Zimmermann J, et al. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’ s disease model[J]. J Clin Invest, 2015, 125(1): 365-378. doi: 10.1172/JCI66771
|
| [27] |
Manji Z, Rojas A, Wang W, et al. 5xFAD mice display sex-dependent inflammatory gene induction during the prodromal stage of Alzheimer’ s disease[J]. J Alzheimers Dis, 2019, 70(4): 1259-1274. doi: 10.3233/JAD-180678
|
| [28] |
Zhang L, Xiang X, Li Y, et al. TREM2 and sTREM2 in Alzheimer’ s disease: From mechanisms to therapies[J]. Mol Neurodegener, 2025, 20(1): 43. doi: 10.1186/s13024-025-00834-z
|
| [29] |
Ulland T K, Colonna M. TREM2—a key player in microglial biology and Alzheimer disease[J]. Nat Rev Neurol, 2018, 14(11): 667-675.
|
| [30] |
Wang L, Nykänen N P, Western D, et al. Proteo-genomics of soluble TREM2 in cerebrospinal fluid provides novel insights and identifies novel modulators for Alzheimer’ s disease[J]. Mol Neurodegener, 2024, 19(1): 1. doi: 10.1186/s13024-023-00687-4
|
| [31] |
Fernández-Matarrubia M, Valera-Barrero A, Renuncio-García M, et al. Early microglial and astrocyte reactivity in preclinical Alzheimer’ s disease[J]. Alzheimers Dement, 2025, 21(8): e70502.
|
| [32] |
Casaletto K B, Nichols E, Aslanyan V, et al. Sex-specific effects of microglial activation on Alzheimer’ s disease proteinopathy in older adults[J]. Brain, 2022, 145(10): 3536-3545. doi: 10.1093/brain/awac257
|
| [33] |
Franzmeier N, Suárez-Calvet M, Frontzkowski L, et al. Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration[J]. Mol Neurodegener, 2020, 15(1): 57. doi: 10.1186/s13024-020-00407-2
|
| [34] |
Wang Y C, Huang L Y, Guo H H, et al. Higher CSF sTREM2 attenuates APOE ε4-related risk for amyloid pathology in cognitively intact adults: The CABLE study[J]. J Neurochem, 2025, 169(1): e16273. doi: 10.1111/jnc.16273
|
| [35] |
Mwale P F, Hsieh C T, Yen T L, et al. Chitinase-3-like-1: A multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications[J]. Mol Neurodegener, 2025, 20(1): 7. doi: 10.1186/s13024-025-00801-8
|
| [36] |
Zeng X, Cheung S K K, Shi M, et al. Astrocyte-specific knockout of YKL-40/Chi3l1 reduces Aβ burden and restores memory functions in 5xFAD mice[J]. J Neuroinflammation, 2023, 20(1): 290. doi: 10.1186/s12974-023-02970-z
|
| [37] |
Pase M P, Himali J J, Puerta R, et al. Association of plasma YKL-40 with MRI, CSF, and cognitive markers of brain health and dementia[J]. Neurology, 2024, 102(4): e208075.
|
| [38] |
Kakkar A, Singh H, Singh B K, et al. Neuroinflammation and Alzheimer’ s disease: Unravelling the molecular mechanisms[J]. J Alzheimers Dis, 2025, 108(1): 19-41.
|
| [39] |
Cummings J L, Zhou Y, Lee G, et al. Alzheimer’ s disease drug development pipeline: 2025[J]. Alzheimers Dement Transl Res Clin Interv, 2025, 11(2): e70098.
|
| [40] |
周艳星, 肖小华, 梁春华, 等. 阿尔茨海默病神经炎症相关药物治疗研究进展[J]. 阿尔茨海默病及相关病, 2024, 7(3): 218-225. doi: 10.3969/j.issn.2096-5516.2024.03.011
|
| [41] |
Cummings J, Osse A M L, Cammann D, et al. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’ s disease[J]. BioDrugs, 2024, 38(1): 5-22. doi: 10.1007/s40259-023-00633-2
|
| [42] |
Company E L a. A study of LY3002813 in participants with early symptomatic Alzheimer’ s disease (TRAILBLAZER-ALZ); [EB/OL]. (2022-10-13)[2025-11-3]. https://clinicaltrials.gov/study/NCT03367403.
|
| [43] |
Company E L a. A study of donanemab (LY3002813) in participants with early Alzheimer’ s disease (TRAILBLAZER-ALZ 2) [EB/OL]. (2025-8-29)[2025-11-3]. https://clinicaltrials.gov/study/NCT04437511.
|
| [44] |
Bittner T, Tonietto M, Klein G, et al. Biomarker treatment effects in two phase 3 trials of gantenerumab[J]. Alzheimers Dement, 2025, 21(2): e14414. doi: 10.1002/alz.14414
|
| [45] |
Pomara N, Imbimbo B P. Do anti-Aβ monoclonal antibodies lower brain plaques in Alzheimer patients through microglia activation[J]. Alzheimers Dement, 2024, 20(3): 2289-2290.
|
| [46] |
Deardorff W J, Grossberg G T. Targeting neuroinflammation in Alzheimer’ s disease: Evidence for NSAIDs and novel therapeutics[J]. Expert Rev Neurother, 2017, 17(1): 17-32. doi: 10.1080/14737175.2016.1200972
|
| [47] |
Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma[J]. Proc Natl Acad Sci USA, 2006, 103(2): 443-448.
|
| [48] |
Novoa C, Salazar P, Cisternas P, et al. Inflammation context in Alzheimer’ s disease, a relationship intricate to define[J]. Biol Res, 2022, 55(1): 39.
|
| [49] |
Lichtenstein M P, Carriba P, Baltrons M A, et al. Secretase-independent and RhoGTPase/PAK/ERK-dependent regulation of cytoskeleton dynamics in astrocytes by NSAIDs and derivatives[J]. J Alzheimers Dis, 2010, 22(4): 1135-1155. doi: 10.3233/jad-2010-101332
|
| [50] |
Chen C H, Zhou W, Liu S, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’ s disease[J]. Int J Neuropsychopharmacol, 2012, 15(1): 77-90. doi: 10.1017/S1461145711000149
|
| [51] |
McGeer P L, Rogers J, McGeer E G. Inflammation, antiinflammatory agents, and Alzheimer’ s disease: The last 22 years[J]. J Alzheimers Dis, 2016, 54(3): 853-857.
|
| [52] |
Trias E, Ibarburu S, Barreto-Núñez R, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis[J]. J Neuroinflammation, 2016, 13(1): 177. doi: 10.1186/s12974-016-0620-9
|
| [53] |
Qian J, Tu H, Zhang D, et al. Therapeutic effects of masitinib on abnormal mechanoreception in a mouse model of tourniquet-induced extremity ischemia-reperfusion[J]. Eur J Pharmacol, 2021, 911: 174549. doi: 10.1016/j.ejphar.2021.174549
|
| [54] |
Li T, Martin E, Abada Y S, et al. Effects of chronic masitinib treatment in APPswe/PSEN1dE9 transgenic mice modeling Alzheimer’ s disease[J]. J Alzheimers Dis, 2020, 76(4): 1339-1345. doi: 10.3233/JAD-200466
|
| [55] |
Dubois B, López-Arrieta J, Lipschitz S, et al. Masitinib for mild-to-moderate Alzheimer’ s disease: Results from a randomized, placebo-controlled, phase 3, clinical trial[J]. Alzheimers Res Ther, 2023, 15(1): 39.
|
| [56] |
Hermine O, Gros L, Tran T A, et al. Tyrosine kinase inhibitor, masitinib, limits neuronal damage, as measured by serum neurofilament light chain concentration in a model of neuroimmune-driven neurodegenerative disease[J]. PLoS One, 2025, 20(5): e0322199.
|
| [57] |
Zhu Y, Xu H, Yu C, et al. Polymers for the treatment of Alzheimer’ s disease[J]. Front Pharmacol, 2025, 16: 1512941. doi: 10.3389/fphar.2025.1512941
|
| [58] |
Xiao S, Chan P, Wang T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’ s dementia[J]. Alzheimers Res Ther, 2021, 13(1): 62.
|
| [59] |
Bosch M E, Dodiya H B, Michalkiewicz J, et al. Sodium oligomannate alters gut microbiota, reduces cerebral amyloidosis and reactive microglia in a sex-specific manner[J]. Mol Neurodegener, 2024, 19(1): 18.
|
| [60] |
Song M, Zhang S, Gan Y, et al. Poria cocos polysaccharide reshapes gut microbiota to regulate short-chain fatty acids and alleviate neuroinflammation-related cognitive impairment in Alzheimer’ s disease[J]. J Agric Food Chem, 2025, 73(17): 10316-10330. doi: 10.1021/acs.jafc.5c01042
|
| [61] |
Li X, Chen J, Feng W, et al. Berberine ameliorates iron levels and ferroptosis in the brain of 3 × Tg-AD mice[J]. Phytomedicine, 2023, 118: 154962.
|
| [62] |
Jin X, Liu M Y, Zhang D F, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway[J]. CNS Neurosci Ther, 2019, 25(5): 575-590.
|
| [63] |
Gu M Y, Chun Y S, Yong R S, et al. Licoflavonol reduces aβ secretion by increasing BACE1 phosphorylation to facilitate BACE1 degradation[J]. Mol Nutr Food Res, 2019, 63(3): e1800474. doi: 10.1002/mnfr.201800474
|
| [64] |
Wang L, Lu Y, Liu J, et al. Gegen Qinlian tablets delay Alzheimer’ s disease progression via inhibiting glial neuroinflammation and remodeling gut microbiota homeostasis[J]. Phytomedicine, 2024, 128: 155394. doi: 10.1016/j.phymed.2024.155394
|
| [65] |
Ding T, Song M, Wu Y, et al. Schisandrin B ameliorates Alzheimer’ s disease by suppressing neuronal ferroptosis and ensuing microglia M1 polarization[J]. Phytomedicine, 2025, 142: 156780. doi: 10.1016/j.phymed.2025.156780
|
| [66] |
Zhang J, Zhang H L, Xu X R, et al. Targeting PBK with small-molecule 1-O-acetyl-4R, 6S-britannilactone for the treatment of neuroinflammation[J]. Proc Natl Acad Sci USA, 2025, 122(29): e2502593122.
|
| [67] |
周金勇, 何佳维, 罗荣司庆, 等. 基于网络药理学及实验验证探索七福饮和当归芍药散 “同病异治” 阿尔茨海默病的机制[J]. 现代中西医结合杂志, 2025, 34(5): 598-605. doi: 10.3969/j.issn.1008-8849.2025.05.003
|
| [68] |
He C, Yu W, Yang M, et al. Qi Fu Yin ameliorates neuroinflammation through inhibiting RAGE and TLR4/NF-κB pathway in AD model rats[J]. Aging, 2023, 15(22): 13239-13264. doi: 10.18632/aging.205238
|
| [69] |
Senatorov V V Jr, Friedman A R, Milikovsky D Z, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction[J]. Sci Transl Med, 2019, 11(521): eaaw8283. doi: 10.1126/scitranslmed.aaw8283
|
| [70] |
Wang S, Mustafa M, Yuede C M, et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’ s disease model[J]. J Exp Med, 2020, 217(9): e20200785. doi: 10.1084/jem.20200785
|
| [71] |
Frazier H N, Braun D J, Bailey C S, et al. A small molecule p38α MAPK inhibitor, MW150, attenuates behavioral deficits and neuronal dysfunction in a mouse model of mixed amyloid and vascular pathologies[J]. Brain Behav Immun Health, 2024, 40: 100826.
|
| [72] |
Kim B H, Kim S, Nam Y, et al. Second-generation anti-amyloid monoclonal antibodies for Alzheimer’ s disease: Current landscape and future perspectives[J]. Transl Neurodegener, 2025, 14(1): 6. doi: 10.1186/s40035-025-00465-w
|
| [73] |
Chen C, Katayama S, Lee J H, et al. Clarity AD: Asian regional analysis of a phase III trial of lecanemab in early Alzheimer’ s disease[J]. J Prev Alzheimers Dis, 2025, 12(5): 100160. doi: 10.1016/j.tjpad.2025.100160
|
| [74] |
Muliaditan M, van Steeg T J, Avery L B, et al. Translational minimal physiologically based pharmacokinetic model for transferrin receptor-mediated brain delivery of antibodies[J]. MAbs, 2025, 17(1): 2515414. doi: 10.1080/19420862.2025.2515414
|
| [75] |
Reading C L, Ahlem C N, Murphy M F. NM101 Phase III study of NE3107 in Alzheimer’ s disease: Rationale, design and therapeutic modulation of neuroinflammation and insulin resistance[J]. Neurodegener Dis Manag, 2021, 11(4): 289-298.
|
| [76] |
Reading C L, Ahlem C N, Parameswaran N. Rationale for an anti-inflammatory insulin sensitizer in a phase 3 Alzheimer’ s disease trial[J]. Alzheimers Dement, 2021, 17(S9): e057438.
|
| [77] |
Heneka M T, van der Flier W M, Jessen F, et al. Neuroinflammation in Alzheimer disease[J]. Nat Rev Immunol, 2025, 25(5): 321-352.
|
| [1] | Haijun LOU, Zhenyu ZHANG, Alimujiang SUREYAN, Menggen MENG, Hang CHEN, Muli WUDU. Expression Characteristics and Clinical Pathological Features of TMEM33 in Lung Adenocarcinoma. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250304 |
| [2] | Taishan WANG, Guiyang JIA, Guoyue LIU, Erqin SONG, Guizhen YIN. Research Progress on Early Risk Prediction Model of Acute Respiratory Distress Syndrome. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250517 |
| [3] | Yanping LI, Qingyun LI, Rong HUO, Xiaolin DONG, Hongmei LI, Huan WEI, Yi ZENG. miR-21-5p Targetes STAT3 Reduce the OGD/R-induced Neuronal Injury. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250502 |
| [4] | Haixiao BAI, Huan WANG, Xinfei DUAN, Pingping FANG, Xiao LI, Jundong JIA. Effects of Inhibiting lncRNA H19 Expression on Neuroinflammation and Cognitive Function in Vascular Dementia Models. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20251203 |
| [5] | Li LI, Ruixian ZHANG. Research Progress on The Potential Application of Circular RNA in Systemic Lupus Erythematosus. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240622 |
| [6] | Daolin CUI, Chunli CHEN, Zhenghong ZHOU, Lei GONG. Bioinformatics-Based Analysis of the Roles of MX1,IFI44, and STAT1 in Lupus Nephritis. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20241215 |
| [7] | Rui LI, Jianpei SU, Jin LI, Wenjun DENG, Yazhou ZHANG. A Mendelian Randomization Study on Alzheimer’ s Disease and Sarcopenia. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240804 |
| [8] | Man YANG, Xingan ZHAO, Yunna GE, Juan QIN, Xiya WANG, Siming TAO. Identification of Atrial Fibrillation-related Inflammatory Genes and Their Association with Immune Cell Infiltration Based on Comprehensive Bioinformatic Analysis. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240303 |
| [9] | Yamin WANG, Yuanyuan LI, Yanyun XUE. The Clinical Efficacy of Ginkgo Leaf Injection Combined with Donepezil in the Treatment of Alzheimer's Disease Based on Cerebral Hemodynamics and Inflammatory Factors. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240524 |
| [10] | Xiaodong ZHU, Yanlong LIU, Xu ZHOU, Hailong DAI, Xiaolong YIN. Value of cMyBP-C in Clinical Diagnosis of Acute Myocardial Infarction. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230328 |
| [11] | Danhong DONG, Weiwen WANG, Dexia LI, Jun YANG, Na LI, Hang MA, Lin LI. Current Status of Drug Treatment for Chronic Heart Failure Patients With Reduced Ejection Fraction in Yunnan: a Single-center Survey. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230822 |
| [12] | Yuxin XIONG, Ying YANG. Research Progress of Diabetic Tubulopathy. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230920 |
| [13] | Huiping HE, Yaowei HE, Zonglin SHEN, Xiaoxiao SONG, Baoluo LI, Hongyan JIANG. Comparative Analysis of Behavioral and Psychological Symptoms of Dementia in Patients with Alzheimer's Disease and Mild Cognitive Impairment. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220913 |
| [14] | Yuan-yuan LI, Juan LI, Gen-meng YANG, Jian HUANG, Liu LIU, Bao-yu SHEN, Chan WANG, Yue XU, Shu-cheng LIN, Xiao-feng ZENG. Research Progress on Neurotoxic Effects and Mechanism of Methamphetamine. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210210 |
| [15] | Liu Ya Ming , Xu Mian , Yan Yue Xin , Zhou Feng Gao , Xu Cheng , Zhao Kun , Jiang Guo Yun , Wu Yu, Liu Rong . . Journal of Kunming Medical University, |
| [16] | Deng Li, Li Jing Tao , Cao Guang Qiong . NGF-BMSCs移植对阿尔茨海默病大鼠神经行为学的改善. Journal of Kunming Medical University, |
| [17] | Huang Wei . . Journal of Kunming Medical University, |
| [18] | Li Yuan . . Journal of Kunming Medical University, |
| [19] | Hao Ying Lu . . Journal of Kunming Medical University, |
| [20] | Hu Dong Hui . 阿立哌唑与利培酮治疗阿尔茨海默病性痴呆精神症状的临床对照. Journal of Kunming Medical University, |