| Citation: | Zhuohang CHE, Ying QIAN, Qiong MENG, Xuehui ZHANG, Chuanwen FU, Xing ZHAO, Jianzhong YIN. Research Progress in the Cohort Study of Native Plateau Populations at High-Altitude in Southwest China[J]. Journal of Kunming Medical University. |
| [1] |
Manolio T A, Goodhand P, Ginsburg G. The International Hundred Thousand Plus Cohort Consortium: Integrating large-scale cohorts to address global scientific challenges[J]. Lancet Digit Health, 2020, 2(11): e567-e568. doi: 10.1016/S2589-7500(20)30242-9
|
| [2] |
Zhou Y, Lai H, Xu C. Global trends and age-period-cohort effects of chronic respiratory disease mortality attributed to industrial gaseous pollutants from 1990 to 2021[J]. Sci Rep, 2025, 15: 11924. doi: 10.1038/s41598-025-90406-4
|
| [3] |
Edwards N, Plotnikoff R C. Mobilizing an underused resource: Cohort studies for population health intervention research[J]. Int J Epidemiol, 2018, 47(6): 1730-1733.
|
| [4] |
Doll R, Hill A B. Smoking and carcinoma of the lung[J]. Bmj, 1950, 2(4682): 739-748. doi: 10.1136/bmj.2.4682.739
|
| [5] |
Lin Y, Chen L, Huang J, et al. Breadth versus depth: Balancing variables, sample size, and quality in Chinese cohort studies[J]. Bmj, 2025, 391: e082566. doi: 10.1136/bmj-2024-082566
|
| [6] |
China Cohort Sharing Platform(CCSP) [Z]. https://cohortconsortium.com/queues
|
| [7] |
熊燕, 孟晶, 毛开云, 等. 自然人群前瞻性队列建设现状与趋势[J]. 中国临床医学, 2025, 32(05): 841-55.
|
| [8] |
Zhao X, Hong F, Yin J, et al. Cohort profile: The China multi-ethnic cohort (CMEC) study[J]. Int J Epidemiol, 2021, 50(3): 721-721l. doi: 10.1093/ije/dyaa185
|
| [9] |
赵星, 洪峰, 殷建忠, 等. 西南区域自然人群队列简介与研究进展[J]. 中华流行病学杂志, 2023, 44(1): 40. doi: 10.3760/cma.j.cn112338-20221009-00864
|
| [10] |
Bigham A W, Lee F S. Human high-altitude adaptation: Forward genetics meets the HIF pathway[J]. Genes Dev, 2014, 28(20): 2189-2204. doi: 10.1101/gad.250167.114
|
| [11] |
Huang T, Zhang X, Li Q, et al. The association between obesity susceptibility and polymorphisms of MC4R, SH2B1, and NEGR1 in tibetans[J]. Genet Test Mol Biomark, 2024, 28(7): 267-274. doi: 10.1089/gtmb.2023.0546
|
| [12] |
曾永利. 云南高原偏寒地区汉族人群辣食摄入与肥胖关联研究及其机制探索 [D]; 昆明医科大学, 2022.
|
| [13] |
Zhou J, He R, Shen Z, et al. Altitude and metabolic syndrome in China: Beneficial effects of healthy diet and physical activity[J]. J Glob Health, 2023, 13: 04061. doi: 10.7189/jogh.13.04061
|
| [14] |
高留飞. 云南哈尼族和纳西族居民血清Visfatin、A-FABP水平及与慢性病关系的对比研究 [D]; 昆明医科大学, 2019.
|
| [15] |
Tang D, Xiao X, Chen L, et al. Association of dietary patterns with obesity and metabolically healthy obesity phenotype in Chinese population: A cross-sectional analysis of China Multi-Ethnic Cohort Study[J]. Br J Nutr, 2022, 128(11): 2230-2240. doi: 10.1017/S0007114521005158
|
| [16] |
Qian Y, Che Z, Fu C, et al. Study on the association between dietary quality and overweight/obesity of Han nationality with cold in Yunnan Plateau by DBI-16–a study based on a multi-ethnic cohort in China[J]. Diabetes Metab Syndr Obes, 2023, 16: 2311-2327. doi: 10.2147/DMSO.S420260
|
| [17] |
Deng Q, Yin J, Peng J, et al. Altitude differences in changes in physical activity and weight gain[J]. Asia Pac J Public Health, 2025, 37(4): 371-378. doi: 10.1177/10105395251325620
|
| [18] |
Zhao Z, Huang J, Zhong D, et al. Associations of three thermogenic adipokines with metabolic syndrome in obese and non-obese populations from the China plateau: The China Multi-Ethnic Cohort[J]. BMJ Open, 2023, 13(7): e066789. doi: 10.1136/bmjopen-2022-066789
|
| [19] |
Zhang T, Huang J, Li Y, et al. Plasma fatty acids, not dietary fatty acids, associated with obesity in four ethnic minority groups unique to southwest China: A cross-sectional study[J]. Diabetes Metab Syndr Obes Targets Ther, 2022, 15: 3753-3765. doi: 10.2147/DMSO.S386812
|
| [20] |
陈果. 云南高原偏寒冷地区汉族肥胖人群血清Visfatin、A-FABP水平及其影响因素研究 [D]; 昆明医科大学, 2020.
|
| [21] |
郭艳东. 云南高原偏寒地区汉族PPARγ2基因Pro12Ala、C161-T多态性与肥胖的关联研究 [D]; 昆明医科大学, 2020.
|
| [22] |
钱映. 云南高原偏寒地区汉族自然人群肥胖与肠道菌群的相关性研究 [D]; 昆明医科大学, 2022.
|
| [23] |
Qian Y, Zeng Y, Mi F, et al. Gut microbiota bridging spicy food intake and obesity: Evidence from the China Multi-Ethnic Cohort (CMEC) study[J]. BMC Public Health, 2025, 25(1): 3267. doi: 10.1186/s12889-025-23936-1
|
| [24] |
黄娟. 高浓度瘦素抑制脂肪组织线粒体自噬诱导肥胖的机制研究 [D]; 昆明医科大学, 2023.
|
| [25] |
洪汝丹. 基于云南偏寒地区肥胖人群研究抑制ACE轴/激活ACE2轴抗肥胖作用及机制 [D]; 昆明医科大学, 2023.
|
| [26] |
Zhang M, Zhu X, Wu J, et al. Prevalence of hyperuricemia among Chinese adults: Findings from two nationally representative cross-sectional surveys in 2015–16 and 2018–19[J]. Front Immunol, 2022, 12: 791983. doi: 10.3389/fimmu.2021.791983
|
| [27] |
Hong R, Huang J, Xu C, et al. Association of sedentary behavior and physical activity with hyperuricemia and sex differences: Results from the China multi-ethnic cohort study[J]. J Rheumatol, 2022, 49(5): 513-522. doi: 10.3899/jrheum.211180
|
| [28] |
Wang Y, Zeng Y, Zhang X, et al. Daytime napping duration is positively associated with risk of hyperuricemia in a Chinese population[J]. J Clin Endocrinol Metab, 2021, 106(5): e2096-e2105. doi: 10.1210/clinem/dgab043
|
| [29] |
Wu X, Tang W, Tang D, et al. Two a posteriori dietary patterns are associated with risks of hyperuricemia among adults in less-developed multiethnic regions in Southwest China[J]. Nutr Res, 2023, 110: 96-107. doi: 10.1016/j.nutres.2022.12.012
|
| [30] |
Wang Y, Xu F, Zhang X, et al. Cross-sectional association between gamma-glutamyl transferase and hyperuricaemia: The China Multi-Ethinic Cohort (CMEC) study[J]. BMJ Open, 2022, 12(5): e058793. doi: 10.1136/bmjopen-2021-058793
|
| [31] |
Chen K, Yin J, Dai Y, et al. Associations of long-term exposure to PM2.5 constituents with serum uric acid and hyperuricemia in Chinese adults[J]. Environ Sci Eur, 2023, 35(1): 101. doi: 10.1186/s12302-023-00809-1
|
| [32] |
Deng H, Zhang X, Cheng N, et al. Asymptomatic hyperuricemia associated with increased risk of nephrolithiasis: A cross-sectional study[J]. BMC Public Health, 2023, 23(1): 1525. doi: 10.1186/s12889-023-16469-y
|
| [33] |
Liang N, Yuan X, Zhang L, et al. Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH[J]. Life Metab, 2024, 3(5): loae018. doi: 10.1093/lifemeta/loae018
|
| [34] |
Essawy S S, Abdel-Sater K A, Elbaz A A. Experimental research Comparing the effects of inorganic nitrate and allopurinol in renovascular complications of metabolic syndrome in rats: Role of nitric oxide and uric acid[J]. Aoms, 2014, 3: 537-545. doi: 10.5114/aoms.2013.33222
|
| [35] |
Wang Y, Meng Q, Zhang X, et al. Life’s Essential 8, Life’s Simple 7 and the odds of hyperuricaemia: Results from the China Multi-Ethnic Cohort Study[J]. Rheumatol Adv Pract, 2023, 8: rkae009. doi: 10.1093/rap/rkae009
|
| [36] |
Stefan N, Yki-Järvinen H, Neuschwander-Tetri B A. Metabolic dysfunction-associated steatotic liver disease: Heterogeneous pathomechanisms and effectiveness of metabolism-based treatment[J]. Lancet Diabetes Endocrinol, 2025, 13(2): 134-148. doi: 10.1016/S2213-8587(24)00318-8
|
| [37] |
Quek J, Chan K E, Wong Z Y, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2023, 8(1): 20-30. doi: 10.1016/S2468-1253(22)00317-X
|
| [38] |
Pan X, Hong F, Li S, et al. Long-term exposure to ambient PM2.5 constituents is associated with dyslipidemia in Chinese adults[J]. Ecotoxicol Environ Saf, 2023, 263: 115384. doi: 10.1016/j.ecoenv.2023.115384
|
| [39] |
Xie X, Guo B, Xiao X, et al. Healthy dietary patterns and metabolic dysfunction-associated fatty liver disease in less-developed ethnic minority regions: A large cross-sectional study[J]. BMC Public Health, 2022, 22(1): 118. doi: 10.1186/s12889-021-12486-x
|
| [40] |
张霓裳. 云南汉族、白族和彝族生命早期饥荒暴露与成年期代谢相关脂肪性肝病关联研究 [D]; 昆明医科大学, 2023.
|
| [41] |
车卓航. 云南白族、彝族与汉族自然人群NAFLD患病率及其影响因素分析 [D]; 昆明医科大学, 2024.
|
| [42] |
Fanaei H, Mard S A, Sarkaki A, et al. Gallic acid treats dust-induced NAFLD in rats by improving the liver's anti-oxidant capacity and inhibiting ROS/NFκβ/TNFα inflammatory pathway[J]. Iran J Basic Med Sci, 2021, 24(2): 240-7.
|
| [43] |
Owens D R, Gurudas S, Sivaprasad S, Zaidi F, Tapp R, Kazantzis D, Evans L, Thomas RL. IDF diabetes Atlas: A worldwide review of studies utilizing retinal photography to screen for diabetic retinopathy from 2017 to 2024 inclusive. Diabetes Res Clin Pract. 2025, 226: 112346.
|
| [44] |
方可云, 米飞, 孟琼, 等. 大理白族自然人群糖尿病患病情况及相关分析[J]. 重庆医科大学学报, 2022, 47(05): 620-5.
|
| [45] |
Li S, Guo B, Jiang Y, et al. Long-term exposure to ambient PM2.5 and its components associated with diabetes: Evidence from a large population-based cohort from China[J]. Diabetes Care, 2023, 46(1): 111-119. doi: 10.2337/dc22-1585
|
| [46] |
Wang X, Guo B, Yang X, et al. Role of liver enzymes in the relationship between particulate matter exposure and diabetes risk: A longitudinal cohort study[J]. J Clin Endocrinol Metab, 2022, 107(10): e4086-e4097. doi: 10.1210/clinem/dgac438
|
| [47] |
Huang J, Chen G, Zhang Q, et al. Correlation between adipocyte fatty acid binding protein and glucose dysregulation is closely associated with obesity and metabolic syndrome: A cohort of Han Chinese population from Yunnan plateau[J]. Lipids, 2022, 57(4-5): 257-264. doi: 10.1002/lipd.12353
|
| [48] |
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism[J]. J Mol Med, 2023, 101(5): 487-500. doi: 10.1007/s00109-023-02308-5
|
| [49] |
Zhang Z, Hu S, Fan P, et al. The roles of liver inflammation and the insulin signaling pathway in PM2.5 instillation-induced insulin resistance in wistar rats[J]. Dis Markers, 2021, 2021: 2821673.
|
| [50] |
Li J, Li L, Lin T, et al. Dihydromyricetin preserves β-cell function in type 1 diabetes via PI3K/AKT-mediated metabolic reprogramming[J]. Front Nutr, 2025, 12: 1682308. doi: 10.3389/fnut.2025.1682308
|
| [51] |
Zeng J, Qian Y, Yang J, et al. Nutritional therapy bridges the critical cut-off point for the closed-loop role of type 2 diabetes and bone homeostasis: A narrative review[J]. Heliyon, 2024, 10(7): e28229. doi: 10.1016/j.heliyon.2024.e28229
|
| [52] |
Zhang N, Xiao X, Xu J, et al. Dietary Approaches to Stop Hypertension (DASH) diet, Mediterranean diet and blood lipid profiles in less-developed ethnic minority regions[J]. Br J Nutr, 2022, 128(6): 1137-1146. doi: 10.1017/S0007114521004013
|
| [53] |
Xiao X, Qin Z, Lv X, et al. Dietary patterns and cardiometabolic risks in diverse less-developed ethnic minority regions: Results from the China Multi-Ethnic Cohort (CMEC) Study[J]. Lancet Reg Health West Pac, 2021, 15: 100252.
|
| [54] |
Zare P, Bideshki M V, Sohrabi Z, et al. Effect of Dietary Approaches to Stop Hypertension (DASH) diet on lipid profile in individuals with overweight/obesity: A GRADE-assessed systematic review and meta-analysis of clinical trials[J]. Nutr Metab Cardiovasc Dis, 2025, 35(9): 104057. doi: 10.1016/j.numecd.2025.104057
|
| [55] |
Michielsen C C J R, Hangelbroek R W J, Feskens E J M, et al. Disentangling the effects of monounsaturated fatty acids from other components of a Mediterranean diet on serum metabolite profiles: A randomized fully controlled dietary intervention in healthy subjects at risk of the metabolic syndrome[J]. Molecular Nutrition Food Res, 2019, 63(9): 1801095. doi: 10.1002/mnfr.201801095
|
| [56] |
Global, Regional, and National Burden of Cardiovascular Diseases and Risk Factors in 204 Countries and Territories, 1990-2023 [J]. J Am Coll Cardiol, 2025, 86(22): 2167-2243.
|
| [57] |
Guo Y, Zheng W, Yue T, et al. GCH1 contributes to high-altitude adaptation in Tibetans by regulating blood nitric oxide[J]. J Genet Genom, 2025, S1673-8527(25): 00114-6.
|
| [58] |
张小乔. 云南高原偏寒地区汉族自然人群高血压患病现况及影响因素研究 [D]; 昆明医科大学, 2022.
|
| [59] |
郝歌. 云南世居汉族、白族和彝族高血压与肠道菌群及代谢物的关联研究 [D]; 昆明医科大学, 2023.
|
| [60] |
张小乔, 汪艳蛟, 米飞, et al. 云南高原偏寒地区汉族高血压患病现况及其影响因素分析[J]. 实用预防医学, 2022, 29(09): 1093-7.
|
| [61] |
曾素素, 孟琼, 张雪辉, 等. 云南楚雄30~79岁彝族居民健康生活方式现状及其影响因素分析[J]. 中国公共卫生, 2022, 38(07): 876-8.
|
| [62] |
Chen J, Zuo H, Wu X, et al. Diverse associations between adiposity and blood pressure among 80, 000 multi-ethnic Chinese adults[J]. BMC Public Health, 2023, 23(1): 298. doi: 10.1186/s12889-023-15224-7
|
| [63] |
Yu B, Yin J, Yu P, et al. Unveiling relationships of human instinctive behaviors and blood pressure in Chinese adults: A network analysis[J]. Public Health, 2025, 238: 289-297. doi: 10.1016/j.puhe.2024.12.020
|
| [64] |
熊佳, 刘冉, 黄雪娟, 等. 基于16S rDNA测序分析云南高原世居汉族高血压患者肠道菌群的差异[J]. 广西医科大学学报, 2024, 41(06): 926-33.
|
| [65] |
Dong W, Ma L, Huang Q, et al. Gut microbiome alterations in pulmonary hypertension in highlanders and lowlanders[J]. ERJ Open Res, 2023, 9(3): 617-2022.
|
| [66] |
Goldfarb-Rumyantzev A S, Alper S L. Short-term responses of the kidney to high altitude in mountain climbers[J]. Nephrol Dial Transplant, 2014, 29(3): 497-506. doi: 10.1093/ndt/gft051
|
| [67] |
Wang Y, Mi F, Zhang Q, et al. Effect of life’s essential 8 and exposure to solid fuels for cooking on cardiovascular disease risk[J]. Can J Cardiol, 2025, 41(10): 1946-1954.
|
| [68] |
Yang S, Yu R, Yang F, et al. Mediation role of gut microbiota in the association between ambient fine particulate matter components and cardiovascular disease: Evidence from a China cohort[J]. Environ Res, 2025, 275: 121421. doi: 10.1016/j.envres.2025.121421
|
| [69] |
Chen X, Wang Y, Mi F, et al. Higher Life’s Essential 8 score is associated with lower risk of kidney stones in Chinese adults: A cross-sectional study[J]. BMC Public Health, 2025, 25(1): 3732. doi: 10.1186/s12889-025-24499-x
|
| [70] |
Dai Y, Yin J, Li S, et al. Long-term exposure to fine particulate matter constituents in relation to chronic kidney disease: Eridence from a large population-based study in China[J]. Environ Geochem Health, 2024, 46(5): 174. doi: 10.1016/j.heliyon.2024.e32497
|
| [71] |
陈睿, 楚红, 李鹏飞, 等. 大气颗粒物对慢性肾脏病影响的研究进展[J]. 生物医学转化, 2022, 3(02): 2-8.
|
| [72] |
Dai Y, Yin J, Li S, et al. Long-term exposure to fine particulate matter constituents in relation to chronic kidney disease: Evidence from a large population-based study in China[J]. Environ Geochem Health, 2024, 46(5): 174. doi: 10.1007/s10653-024-01949-w
|
| [73] |
刘雨寒. 生命早期饥荒暴露与成年期焦虑抑郁患病的关联研究 [D]; 昆明医科大学, 2024.
|
| [74] |
Hou Z, Chen Y, Sun Y, et al. Sleep duration and insomnia with comorbid depression and anxiety symptoms in Chinese adults: A cross-sectional study[J]. Nat Sci Sleep, 2023, 15: 1079-1091. doi: 10.2147/NSS.S440584
|
| [75] |
Bai H, Wang Y, Liu Y, et al. Early-Life famine exposure and the risk of depression and anxiety in adulthood: Evidence from the China Multi-Ethnic Cohort (CMEC)[J]. BMC Psychiatry, 2025, 25(1): 967. doi: 10.1186/s12888-025-07375-1
|
| [76] |
Shen L, Li C, Wang Z, et al. Early-life exposure to severe famine is associated with higher methylation level in the IGF2 gene and higher total cholesterol in late adulthood: The Genomic Research of the Chinese Famine (GRECF) study[J]. Clin Epigenet, 2019, 11(1): 88. doi: 10.1186/s13148-019-0676-3
|
| [77] |
Eichenauer H, Ehlert U. The association between prenatal famine, DNA methylation and mental disorders: A systematic review and meta-analysis[J]. Clin Epigenet, 2023, 15(1): 152. doi: 10.1186/s13148-023-01557-y
|
| [78] |
Zhang J, Wang S, Zhang X, et al. Mediating role of social capital on the association between negative life events and quality of life among adults in China: A population-based study[J]. Front Public Health, 2022, 10: 987579. doi: 10.3389/fpubh.2022.987579
|
| [79] |
Wang Y X, Farland L V, Gaskins A J, et al. Endometriosis and uterine fibroids and risk of premature mortality: Prospective cohort study[J]. Bmj, 2024, 387: e078797. doi: 10.1136/bmj-2023-078797
|
| [80] |
Sun Y, Han X, Hou Z, et al. Association between leisure sedentary behaviour and uterine fibroids in non-menopausal women: A population-based study[J]. BMJ Open, 2023, 13(12): e073592. doi: 10.1136/bmjopen-2023-073592
|
| [81] |
Yin J, Meng Q, Feng Y. Progress towards global nutrition targets and future directions[J]. Lancet, 2025, 406(10505): 807-808.
|
| [82] |
Zeng D, Li H, Car J, et al. Transforming Chinese cohort studies through artificial intelligence: A new era of population health research[J]. Bmj, 2025, 391: e082568. doi: 10.1136/bmj-2024-082568
|
| [83] |
Lyu G, Ye W, Gao M, et al. Building sustainable cohort studies in China: A hybrid model for public health research[J]. Bmj, 2025, 391: e082567. doi: 10.1136/bmj-2024-082567
|
| [84] |
Ji J S, Smith G D, Clark J. Enhancing cohort studies in China and international collaboration[J]. Bmj, 2025, 391: r2026. doi: 10.1136/bmj.r2026
|
| [1] | Liping WANG, Puxian PENG, Aihan WEN, Yuan ZHANG, Yazhou SHEN, Tao WANG, Songyuan TANG, Xingmei DENG. Analysis of Incidence Rate and Risk Factors of Preeclampsia Based on A Maternal and Infant Health Cohort. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230715 |
| [2] | Hang YANG, Hao ZOU, Zhao NA, Li CHEN, Hui FANG. Analysis of Risk Factors for Ovarian Necrosis with Ovarian Incarcerated Hernia. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230221 |
| [3] | Yan DONG, Wenwen LI, Wenlong CUI, Jie LIU, Weihong BI. Correlation Analysis of Chronic Diseases and Physical Labor Intensity among the Rural Elderly in Two Counties of Yunnan Province. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230303 |
| [4] | Weimin LU, Xiaotao YANG, Ying ZHU, Yi HUANG, Houyu CHEN, Haifeng JIN, Yanchun WANG. Clinical Features and Risk Factors for Critical Cases of Scrub Typhus in 175 Children. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220814 |
| [5] | Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220830 |
| [6] | Shifeng XIONG, Hao ZOU. Analysis of Risk Factors for Lymph Node Metastasis of Gallbladder Cancer. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220318 |
| [7] | Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220524 |
| [8] | Qingzhu ZHOU, Zhuo GONG, Xian ZHAO, Boyan LIU, Wenli HUANG, Jia HE, Liu LIU, Pufei PU. Recombinant Human Epidermal Growth Factor on the Repairing Effect of Sensitive Skin in High Altitude Areas in Yunnan Province. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220627 |
| [9] | Jing WANG, Lian-fang TANG, Mei-qun GU, Xiao-yan XU, Jian-hua YU, Shan HE, Zi-wei LI, Kai BI, Li-qiao LIU, Qiong ZHAO, Hong-ying MI. Risk Factors and Early Clinical Characteristics of Neonatal Necrotizing Enterocolitis. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20211118 |
| [10] | Ze-zu MENG, Hang XIAN, Xiao-jin HOU, Shi-lei WEI, Ji MA, Rui ZHAO, Rui Cong. Analysis of the Risk Factors Associated with Vascular Crisis after the Digits Replantation. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210122 |
| [11] | Zhao Jiang , Zhang Qiang , Tang Qin Lan , Min Xiang Dong , Cai Tong Jian , Liu Zhi Tao . . Journal of Kunming Medical University, |
| [12] | Li Jun . Analysis of Fatigue and Related Health and Safety Risk Factors Among Taxi Drivers in Kunming. Journal of Kunming Medical University, |
| [13] | Dai Mei . Risk Factors for Asthma in Children in Kunming City, China. Journal of Kunming Medical University, |
| [14] | Li Qing . Study on the Burden of Obesity-related Chronic Diseases and Its Impact on Social Economy. Journal of Kunming Medical University, |
| [15] | Li Yan Yuan . . Journal of Kunming Medical University, |
| [16] | Liu Yi . . Journal of Kunming Medical University, |
| [17] | Mao Yong . . Journal of Kunming Medical University, |
| [18] | Zhu Jing . The Potential Risk Factors Analysis of HIV/STD Infection in Vietnamese Cross-border Female Sex Workers. Journal of Kunming Medical University, |
| [19] | Yang Xi . . Journal of Kunming Medical University, |
| [20] | Yang Qiu Ping . . Journal of Kunming Medical University, |