Turn off MathJax
Article Contents
Xiaoyu YANG, Bo LI, Rui ZHENG, Min SU. Molecular Docking-Based Screening and Activity Studies of NDM-1 β-Lactamase Inhibitors against Klebsiella pneumoniae[J]. Journal of Kunming Medical University.
Citation: Xiaoyu YANG, Bo LI, Rui ZHENG, Min SU. Molecular Docking-Based Screening and Activity Studies of NDM-1 β-Lactamase Inhibitors against Klebsiella pneumoniae[J]. Journal of Kunming Medical University.

Molecular Docking-Based Screening and Activity Studies of NDM-1 β-Lactamase Inhibitors against Klebsiella pneumoniae

  • Received Date: 2025-11-10
    Available Online: 2026-01-20
  •   Objective  To screen potential inhibitors based on the three-dimensional structure of NDM-1 enzyme and evaluate their pharmacological activity.   Methods  Computer-aided drug design methods were employed to screen the top 5 candidate compounds with the highest molecular docking scores from the 50K Diversity Library. The minimum inhibitory concentration (MIC) was further determined in combination with meropenem, imipenem, and ceftazidime to assess their inhibitory activity against NDM-1. The stability of the candidate compounds binding to NDM-1 was analyzed through molecular dynamics simulation.   Results   When the top 5 compounds with the highest molecular docking scores were combined with three β-lactam antibiotics, the MIC values showed no significant reduction, suggesting limited inhibitory effects on NDM-1. Molecular dynamics simulation revealed that compounds 1, 3, 4, and 5 exhibited large root-mean-square deviation (RMSD) and free energy fluctuations in the reaction system, indicating unstable conformations; although compound 2 showed no significant RMSD fluctuation, its binding free energy value was relatively low, potentially resulting in insufficient binding affinity.   Conclusion  Differences in binding stability between the five candidate compounds and NDM-1 protein led to their overall limited inhibitory activity.
  • loading
  • [1]
    Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs[J]. Genes, 2010, 1(3): 413-426. doi: 10.3390/genes1030413
    [2]
    Krco S, Davis S J, Joshi P, et al. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance[J]. Front Chem, 2023, 11: 1196073. doi: 10.3389/fchem.2023.1196073
    [3]
    金文彬, 李江, 李娇, 等. 超级细菌NDM-1及其抑制剂的研究进展[J]. 药学学报, 2020, 55(6): 1157-1165. doi: 10.16438/j.0513-4870.2019-1049
    [4]
    Philippon A, Jacquier H, Ruppé E, et al. Structure-based classification of class A beta-lactamases, an update[J]. Curr Res Transl Med, 2019, 67(4): 115-122. doi: 10.1016/j.retram.2019.05.003
    [5]
    Tang B, Yang A, Liu P, et al. Outer membrane vesicles transmitting bla (NDM-1) mediate the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2023, 67(5): e01444-e01422. doi: 10.1128/aac.01444-22
    [6]
    Martínez M M B, Bonomo R A, Vila A J, et al. On the offensive: The role of outer membrane vesicles in the successful dissemination of new Delhi metallo-β-lactamase (NDM-1)[J]. mBio, 2021, 12(5): e01836-e01821.
    [7]
    Li L, Zhang Y, Weng L, et al. NDM-5-carried outer membrane vesicles impair the efficacy of antibiotics against bacterial infections[J]. Antimicrob Agents Chemother, 2025, 69(5): e01805-e01824.
    [8]
    Wang T, Xu K, Zhao L, et al. Recent research and development of NDM-1 inhibitors[J]. Eur J Med Chem, 2021, 223: 113667. doi: 10.1016/j.ejmech.2021.113667
    [9]
    Linciano P, Cendron L, Gianquinto E, et al. Ten years with New Delhi metallo-β-lactamase-1 (NDM-1): from structural insights to inhibitor design[J]. ACS Infect Dis, 2019, 5(1): 9-34.
    [10]
    Newman D J, Cragg G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. J Nat Prod, 2020, 83(3): 770-803. doi: 10.1021/acs.jnatprod.9b01285
    [11]
    Jorgensen W L. The many roles of computation in drug discovery[J]. Science, 2004, 303(5665): 1813-1818. doi: 10.1126/science.1096361
    [12]
    郭宗儒. CADD和AIDD的药物化学刍议[J]. 药学学报, 2023, 58(10): 2931-2941. doi: 10.16438/j.0513-4870.2023-0702
    [13]
    Cerqueira N M F S A, Gesto D, Oliveira E F, et al. Receptor-based virtual screening protocol for drug discovery[J]. Arch Biochem Biophys, 2015, 582: 56-67. doi: 10.1016/j.abb.2015.05.011
    [14]
    刘伟, 刘艳红, 倪萍, 等. ALK抑制剂HG-14-10-04的抗真菌活性及其作用机制研究[J]. 药学学报, 2024, 59(12): 3282-3290. doi: 10.16438/j.0513-4870.2024-0695
    [15]
    Guo Y, Wang J, Niu G, et al. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug[J]. Protein Cell, 2011, 2(5): 384-394. doi: 10.1007/s13238-011-1055-9
    [16]
    Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism[J]. FASEB J, 2011, 25(8): 2574-2582. doi: 10.1096/fj.11-184036
    [17]
    Daiyasu H, Osaka K, Ishino Y, et al. Expansion of the zinc metallo-hydrolase family of the β-lactamase fold[J]. FEBS Lett, 2001, 503(1): 1-6.
    [18]
    余俊霖, 李国菠. 计算机辅助金属酶靶向药物发现的研究进展[J]. 中国现代应用药学, 2022, 39(21): 2828-2833. doi: 10.13748/j.cnki.issn1007-7693.2022.21.019
    [19]
    King D T, Worrall L J, Gruninger R, et al. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition[J]. J Am Chem Soc, 2012, 134(28): 11362-11365. doi: 10.1021/ja303579d
    [20]
    Newman H, Krajnc A, Bellini D, et al. High-throughput crystallography reveals boron-containing inhibitors of a penicillin-binding protein with di-and tricovalent binding modes[J]. J Med Chem, 2021, 64(15): 11379-11394. doi: 10.1021/acs.jmedchem.1c00717
    [21]
    Li T, Wang Q, Chen F, et al. Biochemical characteristics of New Delhi metallo-β-lactamase-1 show unexpected difference to other MBLs[J]. PLoS One, 2013, 8(4): e61914. doi: 10.1371/journal.pone.0061914
  • Relative Articles

    [1] Chuanqi YANG, Ruolian ZHAO, Yajuan TANG, Zijie LIU, Huan LI, Hui ZHANG, Lin CHAI. Core Active Substances and Molecular Mechanisms of Traditional Chinese Medicine in Treating IgA Nephropathy Based on Data Mining and Network Pharmacology. Journal of Kunming Medical University,
    [2] Lirong GUO, Xiang LIU, Jiahao LI, Ying ZHANG. Predicting Active Components of Chinese Herbal Medicines for Treating Bone Aging Based on Reverse Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,
    [3] Yaru SUN, Guangli SHENG, Xuan ZHANG. Research Progress of PI3K Signaling Pathway Inhibitors in the Treatment of Pulmonary Fibrosis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250620
    [4] Hongyu CHEN, Lei YANG, Xiao WANG, Ling XIE. Molecular Mechanism of Finasteride Inhibition of Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells under Hypoxia-Inducible Factor 1-alpha/Snail Family Transcriptional Repressor 1 Pathway. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20251107
    [5] Liyue REN, Mingzhi ZHAO, Sijie WANG, Qin LIU, Jiajia LIU. Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250907
    [6] Yanhong YANG, Juan HE, Shan JIN, Piaopiao YE, Xin LI, Li QIAO. Prediction of Psoriasis and Potential Treatment of Traditional Chinese Medicine Based on Reverse Network Pharmacology Analysis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20241207
    [7] Jun XIE, Shaoyou LIU, Hongjin SHI, Qiuyu MAO, Hong YANG. Enhanceing Effect of EZH2 Inhibitors in Combination with GC Chemotherapeutic Agents in Bladder Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20231017
    [8] Ling ZHAO, Shulan JIAO, Yongyu SI, Liu YANG, Yinghui BU. Pharmacokinetic Study of Dexmedetomidine in Patients with Different Degrees of Burn. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230725
    [9] Lan MAO, Hui ZHAN, Ting LUAN, Haifeng WANG, HaoNan DONG, Jiansong WANG. Urodynamics in the Diagnosis and Treatment of Overactive Bladder among Females. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230421
    [10] Ranxi SHI, Tao YANG, Qing CHENG, Liangchen ZHAO, Jiahui GUO, Limei WANG. Mechanism of Dendrobium Officinale Against Inflammatory Aging Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20231101
    [11] Hualei DAI, Chengcheng HU, Guimin ZHANG, Siming TAO, Jiankun CHEN. Screening Biomarkers of Astragalus Membranaceus for Hypertensive Ventricular Remodeling Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230819
    [12] Lin Yi Lin , Zhang Hong , Ding Xiao Xue . . Journal of Kunming Medical University,
    [13] Li Li , Wang Jia , Du Juan , Ke Ting Yu . Research Progress of the Relationship between Arginase Inhibitors and Diabetic Vascular Endothelial Function. Journal of Kunming Medical University,
    [14] Tian Ming . . Journal of Kunming Medical University,
    [15] Zhang Hu . . Journal of Kunming Medical University,
    [16] Song Xin Huan . . Journal of Kunming Medical University,
    [17] Gu Wan Gang . . Journal of Kunming Medical University,
    [18] Gu Wan Gang . . Journal of Kunming Medical University,
    [19] Gu Wan Gang . . Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (53) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return