Turn off MathJax
Article Contents
Lirong GUO, Xiang LIU, Jiahao LI, Ying ZHANG. Predicting Active Components of Chinese Herbal Medicines for Treating Bone Aging Based on Reverse Network Pharmacology and Molecular Docking[J]. Journal of Kunming Medical University.
Citation: Lirong GUO, Xiang LIU, Jiahao LI, Ying ZHANG. Predicting Active Components of Chinese Herbal Medicines for Treating Bone Aging Based on Reverse Network Pharmacology and Molecular Docking[J]. Journal of Kunming Medical University.

Predicting Active Components of Chinese Herbal Medicines for Treating Bone Aging Based on Reverse Network Pharmacology and Molecular Docking

  • Received Date: 2025-07-17
  •   Objective  To explore potential active components of Chinese herbal medicines (CHMs) for treating bone aging and their mechanisms of action using reverse network pharmacology and molecular docking techniques, with preliminary experimental validation.   Methods  Transcriptomic data were obtained from the GEO database. GEO2R was used to analyze differentially expressed genes, identifying a characteristic bone aging gene set. A Protein-Protein Interaction (PPI) network was constructed to identify key targets, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Core disease targets were identified by intersecting results from three algorithms (Degree, MCC, and Stress). These core targets were used to reversely identify CHMs with potential anti-bone aging effects, followed by drug activity analysis. Molecular docking was performed between active components and core disease targets to further screen representative compounds. Senescent bone cell models and animal models were established for preliminary efficacy verification. Cell experiments were divided into 4 groups: control group (Control), bone aging group (D-Gal), quercetin + bone aging group (Que+D-Gal), and quercetin group (Que). An aging bone cell model was constructed using D-galactose (10 g/L), and quercetin (10 µM) was used to treat D-Gal-induced senescent cells. Cellular senescence was observed by SA-β-Gal staining, and p53 protein expression was detected by immunofluorescence and Western blot. Twenty-four C57BL/6J mice were randomly divided into 4 groups (6 mice per group) with the same grouping as cells. A bone aging mouse model was established via subcutaneous injection of D-galactose (500 mg/kg) on the dorsal neck, and quercetin (50 mg/kg) was administered by gavage. HE staining of femoral sections was used to observe bone protective effects.   Results  A total of 669 characteristic bone aging genes were identified, primarily enriched in as PI3K-AKT, MAPK, osteoclast differentiation, and longevity regulation pathways. Core targets were TP53, HSPA4, ESR1, ERBB2, GSK3B, and STAT1. Reverse screening identified CHMs acting on all six core targets: Ardisia japonica , Artemisia argyi , Zingiber officinale, Glycine max , Carthamus tinctorius , Cannabis sativa , and Smilax glabra. The main active components included β-sitosterol, stigmasterol, quercetin, and luteolin. Molecular docking between the six core targets and the active components revealed that stigmasterol, quercetin, and luteolin exhibited strong binding (binding energy ≤ -7 kcal/mol) to all six core targets. Considering both binding energy and oral bioavailability, quercetin was selected as the representative drug for this study. SA-β-Gal staining showed that the positive area of senescent cells in the Que+D-Gal group was significantly reduced compared to the D-Gal group(P < 0.01). Immunofluorescence and Western blot confirmed that that p53 fluorescence signal intensity (P < 0.01) and p53 protein expression (P < 0.001) were significantly decreased in the Que+D-Gal group compared to the D-Gal group.   Conclusion  Through reverse network pharmacology, this study screened active components from traditional Chinese herbs such as Ardisia japonica and Artemisia argyi from large databases. Components like stigmasterol, quercetin, and luteolin may regulate the key aging target TP53 and synergize with genes in bone metabolism-related pathways (e.g., ESR1, GSK3B), thereby exerting bone protective effects.
  • loading
  • [1]
    Horvath T, Leoni T, Reschenhofer P, et al. The impact of ageing, socio-economic differences and the evolution of morbidity on future health expenditure-a dynamic microsimulation[J]. BMC Health Serv Res, 2025, 25(1): 952.
    [2]
    中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学, 2023, 26(14): 1671-1691. doi: 10.12464/j.issn.0253-9802.2025-0086
    [3]
    《老年性骨质疏松症中西医结合诊疗指南》工作组, 史晓林, 刘康. 老年性骨质疏松症中西医结合诊疗指南[J]. 中国骨质疏松杂志, 2024, 30(7): 937-946. doi: 10.3969/j.issn.1006-7108.2024.07.001
    [4]
    Ukon Y, Kaito T, Hirai H, et al. Cellular senescence by loss of Men1 in osteoblasts is critical for age-related osteoporosis[J]. Aging Cell, 2024, 23(10): e14254.
    [5]
    Xu Y, Yang Y, Hua Z, et al. BMP2 immune complexes promote new bone formation by facilitating the direct contact between osteoclasts and osteoblasts[J]. Biomaterials, 2021, 275: 120890. doi: 10.1016/j.biomaterials.2021.120890
    [6]
    Wang J, Zhang Y, Wang S, et al. Bone aging and extracellular vesicles[J]. Sci Bull, 2024, 69(24): 3978-3999. doi: 10.1016/j.scib.2024.10.013
    [7]
    Li K, Hu S, Chen H. Cellular senescence and other age-related mechanisms in skeletal diseases[J]. Bone Res, 2025, 13(1): 68. doi: 10.1038/s41413-025-00448-7
    [8]
    Reid I R, Billington E O. Drug therapy for osteoporosis in older adults[J]. Lancet, 2022, 399(10329): 1080-1092. doi: 10.1016/S0140-6736(21)02646-5
    [9]
    高增杰, 杨扉扉, 李丽莉, 等. 抗骨质疏松症中药的作用机制研究进展[J]. 世界中医药, 2025, 20(5): 848-855. doi: 10.3969/j.issn.1673-7202.2025.05.022
    [10]
    Wang J, Teng F. Efficacy of Chinese herbal medicine in patients with osteoporosis: A systematic review and meta-analysis[J]. Front Med, 2025, 12: 1620264. doi: 10.3389/fmed.2025.1620264
    [11]
    Ojo O A, Ogunlakin A D, Ajayi-Odoko O A, et al. Bioprospection of indigenous herbal formulations for diabetes care: in vitro, network pharmacology, and molecular dynamics studies[J]. BMC Complementary Med Ther, 2025, 25(1): 225.
    [12]
    Lotfi M S, Jamali H, B Rassouli F. Network pharmacology and in silico study of quercetin and structurally similar flavonoids as osteogenesis inducers that interact with oestrogen receptors[J]. Arch Physiol Biochem, 2025, 131(4): 658-669. doi: 10.1080/13813455.2025.2483910
    [13]
    Zhao B, Chen L, Wang W, et al. Anti-osteoporosis activity of lycopene through ESR1∶ Network pharmacology, molecular docking, imaging technology, and experimental validation[J]. Chem Biol Drug Des, 2025, 105(6): e70135.
    [14]
    杨燕红, 贺娟, 金山, 等. 基于逆向网络药理学和分子对接预测银屑病潜在治疗中药的组分构成[J]. 昆明医科大学学报, 2024, 45(12): 49-57. doi: 10.12259/j.issn.2095-610X.S20241207
    [15]
    饶璐, 丁家和, 魏江平, 等. 槐花通过抑制PI3K/AKT通路减轻炎症反应治疗银屑病[J]. 南方医科大学学报, 2025, 45(9): 1989-1996.
    [16]
    Alamro H, Thafar M A, Albaradei S, et al. Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets[J]. Sci Rep, 2023, 13: 4979. doi: 10.1038/s41598-023-30904-5
    [17]
    Liu X, Pan F, Sha C, et al. Fuzi decoction ameliorates intervertebral disc degeneration through ferroptosis modulation by suppressing NF-κB pathway[J]. Int Immunopharmacol, 2025, 148: 114155. doi: 10.1016/j.intimp.2025.114155
    [18]
    叶林霜, 鲁婷, 张美玲, 等. 基于网络药理学和分子对接探讨左归丸“异病同治”阿尔茨海默病和骨质疏松的作用机制[J]. 药物评价研究, 2025, 48(12): 3613-3626.
    [19]
    陈祁青, 马东, 赵继荣, 等. 基于网络药理学及动物实验的杜仲腰痛丸治疗腰椎间盘突出症慢性下肢痛的作用研究[J]. 世界科学技术-中医药现代化, 2023, 25(5): 1702-1713. doi: 10.11842/wst.20220326012
    [20]
    梁超, 杨暑晨, 许言午, 等. 基于AGEs-RAGE轴探讨左归丸有效成分对衰老骨髓间充质干细胞的影响[J]. 时珍国医国药, 2024, 35(5): 1092-1096. doi: 10.3969/j.issn.1008-0805.2024.05.15
    [21]
    朱晓龙. 基于Nrf2/xCT/GPX4通路探讨槲皮素对激素诱导MC3T3-E1铁死亡的研究[D]. 锦州: 锦州医科大学, 2024.
    [22]
    黄彦峰, 张丽凤, 黄永毅, 等. 百香果果皮总黄酮对D-半乳糖所致衰老小鼠海马的影响[J]. 中国老年学杂志, 2024, 44(4): 945-948. doi: 10.3969/j.issn.1005-9202.2024.04.046
    [23]
    招文华. 槲皮素下调DANCR抑制NF——κB骨免疫通路改善PMOP的机制研究[D]. 广州: 广州中医药大学, 2023.
    [24]
    林玲, 向晓东, 帅波, 等. 中药通过减少骨流失改善骨质疏松症研究进展[J]. 中国中医药现代远程教育, 2024, 22(18): 91-93. doi: 10.3969/j.issn.1672-2779.2024.18.029
    [25]
    刘航, 刘中, 莫中成. 中草药调节破骨细胞分化改善老年骨质疏松[J]. 中国骨质疏松杂志, 2024, 30(10): 1477-1482. doi: 10.3969/j.issn.1006-7108.2024.10.014
    [26]
    张海文, 张贤, 许太川, 等. 衰老在骨质疏松领域研究现状及趋势的文献可视化分析[J]. 中国组织工程研究, 2026, 30(6): 1580-1591.
    [27]
    Liu H, Liu L, Rosen C J. PTH and the regulation of mesenchymal cells within the bone marrow niche[J]. Cells, 2024, 13(5): 406. doi: 10.3390/cells13050406
    [28]
    Kiryaman G, Enabulele I, Banville M L, et al. The evolving role of PTH signaling in osteocytes[J]. Endocrinology, 2025, 166(4): bqaf034. doi: 10.1210/endocr/bqaf034
    [29]
    Lademann F, Tsourdi E, Hofbauer L C, et al. Bone cell-specific deletion of thyroid hormone transporter Mct8 distinctly regulates bone volume in young versus adult male mice[J]. Bone, 2022, 159: 116375. doi: 10.1016/j.bone.2022.116375
    [30]
    Hassani S S, Farhadi E, Esmaeili S A, et al. Deciphering the role of ERK and PI3K/Akt as crosstalk pathways between fibroblast-like synoviocytes and osteoclasts; novel therapeutic approach for rheumatoid arthritis[J]. Mol Biol Rep, 2025, 52(1): 662. doi: 10.1007/s11033-025-10769-9
    [31]
    Cao H, Li Q, Gao Y, et al. Metformin promotes osteogenic differentiation of adipose-derived stem cells in diabetic osteoporosis by regulating autophagy[J]. Cell Biol Int, 2025, 49(10): 1354-1366. doi: 10.1002/cbin.70061
    [32]
    Zhang J, Zhu L, Zhou J, et al. BDNF alleviates senescence and enhances osteogenic differentiation in bone marrow mesenchymal stem cells via the TrkB/PI3K/AKT pathway[J]. Tissue Cell, 2025, 96: 102972. doi: 10.1016/j.tice.2025.102972
    [33]
    Liu Y, Liu Q, Zhang Z, et al. The regulatory role of PI3K in ageing-related diseases[J]. Ageing Res Rev, 2023, 88: 101963. doi: 10.1016/j.arr.2023.101963
    [34]
    李岳尧, 张民, 杨家驹. 肉苁蓉苷A通过JNK/MAPK通路抑制破骨细胞活性[J]. 中国组织工程研究, 2025, 29(6): 1144-1151. doi: 10.12307/2025.300
    [35]
    Kitazawa S, Haraguchi R, Kitazawa R. Roles of osteoclasts in pathological conditions[J]. Pathol Int, 2025, 75(2): 55-68. doi: 10.1111/pin.13500
    [36]
    牛园园, 张天驰, 李沐哲, 等. 温肾通络止痛方通过AMPK/mTOR信号通路调控自噬对老年性骨质疏松模型小鼠的干预作用[J]. 中国中西医结合杂志, 2024, 44(1): 84-90. doi: 10.7661/j.cjim.20230923.289
    [37]
    Zheng Y, Deng J, Wang G, et al. P53 negatively regulates the osteogenic differentiation in jaw bone marrow MSCs derived from diabetic osteoporosis[J]. Heliyon, 2023, 9(4): e15188. doi: 10.1016/j.heliyon.2023.e15188
    [38]
    刘沛, 蒋宜伟, 周玉英, 等. p53在骨质疏松症中的作用机制及中医药干预研究进展[J]. 中国骨质疏松杂志, 2023, 29(7): 1021-1026. doi: 10.3969/j.issn.1006-7108.2023.07.017
    [39]
    李洋. 朱砂在龟龄集改善D-半乳糖致大鼠衰老中的作用研究[D]. 太原: 山西大学, 2024.
    [40]
    Zou H, Hu F, Wu X, et al. LINC01089 governs the miR-1287-5p/HSPA4 axis to negatively regulate osteogenic differentiation of mesenchymal stem cells[J]. Bone Joint Res, 2024, 13(12): 779-789. doi: 10.1302/2046-3758.1312.BJR-2023-0272.R2
    [41]
    Cai Y, Sun H, Song X, et al. The Wnt/β-catenin signaling pathway inhibits osteoporosis by regulating the expression of TERT: An in vivo and in vitro study[J]. Aging, 2023, 15(20): 11471-11488. doi: 10.18632/aging.205136
    [42]
    Xu J, Wakai M, Xiong K, et al. The pro-inflammatory cytokine IL6 suppresses mitochondrial function via the gp130-JAK1/STAT1/3-HIF1α/ERRα axis[J]. Cell Rep, 2025, 44(3): 115403. doi: 10.1016/j.celrep.2025.115403
    [43]
    代俊泽, 刘毅, 廖翠平, 等. 中药组方治疗糖尿病合并骨质疏松症用药规律挖掘及其作用机制的网络药理学与分子对接研究[J]. 中华中医药学刊, 2024, 42(12): 158-163, 后插55-后插57. doi: 10.13193/j.issn.1673-7717.2024.12.033
    [44]
    丁佳琪, 周文娟. Wnt/Ca2+/CaMK Ⅱ信号通路在成骨调控及糖尿病骨代谢异常中作用机制的研究进展[J]. 中国口腔种植学杂志, 2025, 30(3): 305-311.
    [45]
    黄越, 柳芳洲, 赵奕菲, 等. 常见黄酮类天然产物对牙槽骨骨稳态的骨免疫调控研究[J]. 中国药学杂志, 2025, 60(2): 153-165. doi: 10.11669/cpj.2025.02.007
    [46]
    殷润良, 葸慧荣, 李喜香, 等. 基于网络药理学和分子对接技术探究滋阴清骨丸治疗脊柱结核的作用机制[J]. 西部中医药, 2025, 38(6): 78-85. doi: 10.12174/j.issn.2096-9600.2025.06.15
    [47]
    闫露露. 基于网络药理学和临床观察探讨骨疏丸治疗原发性骨质疏松症(肾虚血瘀型)的疗效和机制[D]. 昆明: 云南中医药大学, 2024.
    [48]
    Hassin O, Oren M. Drugging p53 in cancer: One protein, many targets[J]. Nat Rev Drug Discov, 2023, 22(2): 127-144.
    [49]
    靳锐, 周福荣, 包芸. 中药调控P53治疗糖尿病肾病的研究进展[J]. 云南中医中药杂志, 2025, 46(9): 69-77. doi: 10.3969/j.issn.1007-2349.2025.09.017
  • Relative Articles

    [1] Chuanqi YANG, Ruolian ZHAO, Yajuan TANG, Zijie LIU, Huan LI, Hui ZHANG, Lin CHAI. Core Active Substances and Molecular Mechanisms of Traditional Chinese Medicine in Treating IgA Nephropathy Based on Data Mining and Network Pharmacology. Journal of Kunming Medical University,
    [2] Jingxiao XU, Jia LIU, Shu YAO, Xi ZHANG, Jiang LI, Guiqin CUI, Xiaoling YI, Dongyun LI. Effects and Mechanism of Quercetin on Osteogenic Differentiation of BMSCs. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250504
    [3] Dan MA, Yajuan ZHANG, Binbin MA, Qiaoning YUE, Jianping LIU. Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250220
    [4] Liyue REN, Mingzhi ZHAO, Sijie WANG, Qin LIU, Jiajia LIU. Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250907
    [5] Leijing RAN, Shaohua WANG, Lintong LI, Li GUI. A Meta-analysis of the Effect of Adjuvant Probiotics in Patients with Osteoporosis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240209
    [6] Yanhong YANG, Juan HE, Shan JIN, Piaopiao YE, Xin LI, Li QIAO. Prediction of Psoriasis and Potential Treatment of Traditional Chinese Medicine Based on Reverse Network Pharmacology Analysis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20241207
    [7] Shaoyou DENG, Rong LI, Jintao LI, Yulan ZHAO, Peijin WANG, Hong ZHENG. Mechanism of Osteoking Improving Osteoarthritis based on Network Pharmacology and DDM Rats. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230701
    [8] Hualei DAI, Chengcheng HU, Guimin ZHANG, Siming TAO, Jiankun CHEN. Screening Biomarkers of Astragalus Membranaceus for Hypertensive Ventricular Remodeling Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230819
    [9] Ranxi SHI, Tao YANG, Qing CHENG, Liangchen ZHAO, Jiahui GUO, Limei WANG. Mechanism of Dendrobium Officinale Against Inflammatory Aging Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20231101
    [10] Li ZHANG, Yuting WANG, Jianing SHI, Dan YU, Renhua YANG, Zhiqiang SHEN, Jiang LONG, Peng CHEN. Network Pharmacology-based Analysis of the Anti-atherosclerosis Mechanism of Scutellarin and Experimental Validation in Vivo. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220804
    [11] Yong LIAO, Yi-yun GUO, Hong-yu ZHOU, Hai-po FENG, Gen-ding CHEN, Shui-qing YANG. Effects of Folic Acid Combined with Alendronate on Bone Metabolism,CCl4 and Fibroblast Growth Factor Levels in Postmenopausal Osteoporosis Patients. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20210716
    [12] Yu-wei JI, Xin ZHAO, Jiang-li LU, Yi YANG, Wei TANG, Jian-lin JIAO. Effect of Osteoking on Bone Density and Bone Biomechanics of Tree Shrews in a Postmenopausal Osteoporotic Fracture Model. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20201103
    [13] Du Shi Gang , Zhao Ling , Pu Meng Xian , Pan Yi , Du Juan , Ke Ting Yu . . Journal of Kunming Medical University,
    [14] Chen Peng , Yang Xi Jun , Li Chun Man , Liu Feng , A Yong Jun . Influence of Quercetin on the Recurrence of Tumor After Liver Cancer Resection in Athymic Mice and its Mechanism. Journal of Kunming Medical University,
    [15] Yang Feng . Establishment of Tree Shrew Osteoporosis Model by Bilateral Ovariectomy. Journal of Kunming Medical University,
    [16] Li Li . Effect of Geraniin on Expression of Wnt3a in BMSC from Osteoporotic Rats. Journal of Kunming Medical University,
    [17] A Yong Jun . . Journal of Kunming Medical University,
    [18] Yang Man . . Journal of Kunming Medical University,
    [19] Liu Feng . . Journal of Kunming Medical University,
    [20] Zhang Xiao Chao . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (31) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return