| Citation: | Xuelin LI, Xiaoyan YANG, Zehua HAN, Yuliang CHEN, Xingyuan XU, Chunyan ZHANG, Yingying XIANG. Synergistic Mechanisms and Applications of Phage-Antibiotic Combination Therapy[J]. Journal of Kunming Medical University. |
| [1] |
Marshall B M, Levy S B. Food animals and antimicrobials: Impacts on human health[J]. Clin Microbiol Rev, 2011, 24(4): 718-733. doi: 10.1128/CMR.00002-11
|
| [2] |
Reygaert W C. An overview of the antimicrobial resistance mechanisms of bacteria[J]. AIMS Microbiol, 2018, 4(3): 482-501. doi: 10.3934/microbiol.2018.3.482
|
| [3] |
Gordillo Altamirano F L, Barr J J. Phage therapy in the postantibiotic era[J]. Clin Microbiol Rev, 2019, 32(2): e00066-18.
|
| [4] |
Safir M C, Bhavnani S M, Slover C M, et al. Antibacterial drug development: A new approach is needed for the field to survive and thrive[J]. Antibiotics, 2020, 9(7): 412. doi: 10.3390/antibiotics9070412
|
| [5] |
Pal N, Sharma P, Kumawat M, et al. Phage therapy: An alternative treatment modality for MDR bacterial infections[J]. Infect Dis, 2024, 56(10): 785-817. doi: 10.1080/23744235.2024.2379492
|
| [6] |
Kalia V C, Patel S K S, Gong C, et al. Re-emergence of bacteriophages and their products as antibacterial agents: An overview[J]. Int J Mol Sci, 2025, 26(4): 1755. doi: 10.3390/ijms26041755
|
| [7] |
D'Accolti M, Soffritti I, Mazzacane S, et al. Bacteriophages as a Potential 360- D’Accolti M, Soffritti I, Mazzacane S, et al. Bacteriophages as a potential 360-degree pathogen control strategy[J]. Microorganisms, 2021, 9(2): 261. doi: 10.3390/microorganisms9020261
|
| [8] |
Diallo K, Dublanchet A. Benefits of combined phage-antibiotic therapy for the control of antibiotic-resistant bacteria: A literature review[J]. Antibiotics, 2022, 11(7): 839. doi: 10.3390/antibiotics11070839
|
| [9] |
Li X, He Y, Wang Z, et al. A combination therapy of Phages and Antibiotics: Two is better than one[J]. Int J Biol Sci, 2021, 17(13): 3573-3582. doi: 10.7150/ijbs.60551
|
| [10] |
Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far[J]. J Biomed Sci, 2022, 29(1): 23. doi: 10.1186/s12929-022-00806-1
|
| [11] |
North O I, Brown E D. Phage-antibiotic combinations: A promising approach to constrain resistance evolution in bacteria[J]. Ann N Y Acad Sci, 2021, 1496(1): 23-34. doi: 10.1111/nyas.14533
|
| [12] |
Chan B K, Sistrom M, Wertz J E, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa[J]. Sci Rep, 2016, 6: 26717. doi: 10.1038/srep26717
|
| [13] |
Liu N, Lewis C, Zheng W, et al. Phage cocktail therapy: Multiple ways to suppress pathogenicity[J]. Trends Plant Sci, 2020, 25(4): 315-317. doi: 10.1016/j.tplants.2020.01.013
|
| [14] |
Kraus S, Fletcher M L, Łapińska U, et al. Phage-induced efflux down-regulation boosts antibiotic efficacy[J]. PLoS Pathog, 2024, 20(6): e1012361. doi: 10.1371/journal.ppat.1012361
|
| [15] |
Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro[J]. PLoS One, 2019, 14(1): e0209390. doi: 10.1371/journal.pone.0209390
|
| [16] |
Łusiak-Szelachowska M, Weber-Dąbrowska B, Górski A. Bacteriophages and lysins in biofilm control[J]. Virol Sin, 2020, 35(2): 125-133. doi: 10.1007/s12250-019-00192-3
|
| [17] |
Bulssico J, PapukashvilI I, Espinosa L, et al. Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation[J]. PLoS Pathog, 2023, 19(9): e1011602. doi: 10.1371/journal.ppat.1011602
|
| [18] |
Comeau A M, Tétart F, Trojet S N, et al. Phage-Antibiotic Synergy (PAS): Beta-lactam and quinolone antibiotics stimulate virulent phage growth[J]. PLoS One, 2007, 2(8): e799. doi: 10.1371/journal.pone.0000799
|
| [19] |
Supina B S I, Dennis J J. The current landscape of phage-antibiotic synergistic (PAS) interactions[J]. Antibiotics, 2025, 14(6): 545. doi: 10.3390/antibiotics14060545
|
| [20] |
Nanda A M, Heyer A, Krämer C, et al. Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level[J]. J Bacteriol, 2014, 196(1): 180-188. doi: 10.1128/JB.01018-13
|
| [21] |
Morris T C, Reyneke B, Khan S, et al. Phage-antibiotic synergy to combat multidrug resistant strains of Gram-negative ESKAPE pathogens[J]. Sci Rep, 2025, 15(1): 17235. doi: 10.1038/s41598-025-01489-y
|
| [22] |
Fothergill J L, Mowat E, Walshaw M J, et al. Effect of antibiotic treatment on bacteriophage production by a cystic fibrosis epidemic strain of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2011, 55(1): 426-428. doi: 10.1128/AAC.01257-10
|
| [23] |
Goerke C, Köller J, Wolz C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2006, 50(1): 171-177. doi: 10.1128/AAC.50.1.171-177.2006
|
| [24] |
Kim M, Jo Y, Hwang Y J, et al. Phage-antibiotic synergy via delayed lysis[J]. Appl Environ Microbiol, 2018, 84(22): e02085-18.
|
| [25] |
Ghatbale P, Sah G P, Dunham S, et al. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy[J]. Antimicrobial Agents and Chemotherapy, 2025, 69(2): e00740-24.
|
| [26] |
曾堃. 耐药粪肠球菌致根尖周炎的噬菌体-抗生素联合治疗研究[D]. 昆明: 昆明理工大学, 2024.
|
| [27] |
Orozco-Ochoa A K, González-Gómez J P, Quiñones B, et al. Bacteriophage Indie resensitizes multidrug-resistant Acinetobacter baumannii to antibiotics in vitro[J]. Sci Rep, 2025, 15(1): 11578. doi: 10.1038/s41598-025-96669-1
|
| [28] |
Fatima R, Hynes A P. Temperate phage-antibiotic synergy is widespread-extending to Pseudomonas-but varies by phage, host strain, and antibiotic pairing[J]. mBio, 2025, 16(2): e0255924. doi: 10.1128/mbio.02559-24
|
| [29] |
Kumaran D, Taha M, Yi Q, et al. Does treatment order matter investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms[J]. Front Microbiol, 2018, 9: 127. doi: 10.3389/fmicb.2018.00127
|
| [30] |
Alharbi M G, Al-Hindi R R, Alotibi I A, et al. Evaluation of phage-antibiotic combinations in the treatment of extended-spectrum β-lactamase-producing Salmonella enteritidis strain PT1[J]. Heliyon, 2023, 9(1): e13077. doi: 10.1016/j.heliyon.2023.e13077
|
| [31] |
Yehia F A A, Yahya G, Elsayed E M, et al. From isolation to application: Utilising phage-antibiotic synergy in murine bacteremia model to combat multidrug-resistant Enterococcus faecalis[J]. Microb Biotechnol, 2025, 18(1): e70075. doi: 10.1111/1751-7915.70075
|
| [32] |
Lin LC, Tsai YC, Lin NT. Phage-Antibiotic Synergy Enhances Biofilm Eradication and Survival in a Zebrafish Model of Pseudomonas aeruginosa Infection Cejuela M, Martin-Castillo B, Menendez J A, et al. ◆◆◆已被撤稿, 建议弃引◆◆◆RETRACTED: Cejuela et al. metformin and breast cancer: Where are we now int. J. mol. sci. 2022, 23, 2705[J]. Int J Mol Sci, 2025, 26(11): 5407.
|
| [33] |
Zhao M, Li H, Gan D, et al. Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae[J]. mSystems, 2024, 9(9): e0060724. doi: 10.1128/msystems.00607-24
|
| [34] |
Rao S, Betancourt-Garcia M, Kare-Opaneye Y O, et al. Critically ill patient with multidrug-resistant Acinetobacter baumannii respiratory infection successfully treated with intravenous and nebulized bacteriophage therapy[J]. Antimicrob Agents Chemother, 2022, 66(1): e00824-21.
|
| [35] |
Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae[J]. Nat Commun, 2022, 13(1): 302. doi: 10.1038/s41467-021-27656-z
|
| [36] |
Otava U E, Tervo L, Havela R, et al. Phage-antibiotic combination therapy against recurrent Pseudomonas Septicaemia in a patient with an arterial stent[J]. Antibiotics, 2024, 13(10): 916. doi: 10.3390/antibiotics13100916
|
| [37] |
Bleibtreu A, Fevre C, Robert J, et al. Combining bacteriophages and dalbavancin for salvage therapy of complex Staphylococcus aureus extradural empyema[J]. Med Mal Infect, 2020, 50(5): 458-459. doi: 10.1016/j.medmal.2020.02.004
|
| [38] |
Rao S, Betancourt-Garcia M, Kare-Opaneye Y O, et al. Critically ill patient with multidrug-resistant Acinetobacter baumannii respiratory infection successfully treated with intravenous and nebulized bacteriophage therapy[J]. Antimicrob Agents Chemother, 2022, 66(1): e00824-21.
|
| [39] |
Law N, Logan C, Yung G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient[J]. Infection, 2019, 47(4): 665-668. doi: 10.1007/s15010-019-01319-0
|
| [40] |
Rao G G, Vallé Q, Mahadevan R, et al. Crossing the chasm: How to approach translational pharmacokinetic-pharmacodynamic modeling of phage dosing[J]. Clin Pharmacol Ther, 2025, 117(1): 94-105. doi: 10.1002/cpt.3426
|
| [41] |
Kim M K, Chen Q, Echterhof A, et al. A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections[J]. Nat Commun, 2024, 15(1): 9987. doi: 10.1038/s41467-024-53994-9
|
| [42] |
Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nat Med, 2019, 25(5): 730-733. doi: 10.1038/s41591-019-0437-z
|
| [43] |
Hibstu Z, Belew H, Akelew Y, et al. Phage therapy: A different approach to fight bacterial infections[J]. Biologics, 2022, 16: 173-186.
|
| [44] |
Rahimian M, Jafari-Gharabaghlou D, Mohammadi E, et al. A new insight into phage combination therapeutic approaches against drug-resistant mixed bacterial infections[J]. Phage, 2024, 5(4): 203-222. doi: 10.1089/phage.2024.0011
|
| [1] | Qiuqi WEI, Wenqian ZHAO, Ling LIU. Advances in the Study of Varenicline Combined with Nicotine Patches for the Treatment of Tobacco Dependence. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250421 |
| [2] | Hao HUANG, Xuelin LI, Zehua HAN, Lin CHANG, Pengfei ZHU, Yingying XIANG. Application of Bacteriophages in Common Infectious Diseases of the Oral Cavity. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250122 |
| [3] | Yahong SUN, Xiaoyu YANG, Rui ZHENG. Progress and Challenges in the Study of Bacteriophage Therapy for Carbapenem-Resistant Klebsiella Pneumoniae Infection. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20250621 |
| [4] | Xiaomei JIN, Jieyan HE, Jichang SHI, Hui XING, Hong WANG, Ju ZHANG, Lijuan DONG, Lihua HUANG, Min CHEN, Zhijuan CHEN, Huichao CHEN. Virus Genotypes and Drug Resistance among HIV/AIDS Patients before Antiretroviral Therapy in Dali Bai Autonomous Prefecture in 2018. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20231123 |
| [5] | Shuangshuang WANG, Yaling LI, Liqin CHEN, Yonghui HAN, Mingbiao MA, Xiaojuan LI. The Analysis of Risk Factors and Drug Resistance of CRE Infection in Children’s Intensive Care Unit. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230918 |
| [6] | Tingting YU, Hongying WANG, Runwu ZHANG, Jing BAI, Dong PU, Dongling LI. Analysis of Drug Resistance Mutation-related Sites in 1 452 Chronic Hepatitis B Patients with Low Viral Load in Kunming Area. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220927 |
| [7] | Tingting YU, Dongling LI, Hongying WANG, Lihua LI, Dong PU, Kunli WU. Investigations on the Infection, Immunity and Drug Resistance of Newly-treated Cases of HIV in Kunming. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220133 |
| [8] | Lianyong CHEN, Haohao RU, Xing YANG, Shuangqun YAN, Tao CHEN, Qinxuan NI, Lin XU. Characteristics of katG and inhA Gene Mutations in INH-Resistant Mycobacterium Tuberculosis in Yunnan Province. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220803 |
| [9] | Jinyi GU, Deyao DENG, Wenli YUAN, Qiuping YANG, Jianmei SONG, Yanjun SHEN, Yuanyuan GUO, Hongyun XU. Clinical Distribution and Drug Resistance Analysis of Acineto Bacterbaumannii from 2014 to 2020. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220504 |
| [10] | Rongyu YANG, Fei SONG, Yunlin WEI, Xianghong YANG, Kaiwen Duan, Yingying XIANG. Effects of Different Accumulation Culture Methods on the Titer of Phage PEf771. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220218 |
| [11] | Ling ZHOU, Feng-di HU, Rong LI, Ye-dan LIAO, Zheng-qin GENG, Jia-dai TANG, Xue-qi ZHANG, Lin XIE, Zuo-zhang YANG. A Clinical Scoring System Predicting the Osteosarcoma Chemotherapy Drug Resistance. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210144 |
| [12] | Wen-jing SUN, Man-ting HU, Na LI, Fei GE, Wen-lin CHEN, Yang LIU. Progress in Clinical Research on Drug Resistance and Reversal of Endocrine Therapy in Breast Cancer. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210724 |
| [13] | Shu-qi CHEN, Peng ZHAO, Ge-fen YIN, Xia XIAO, Yan LI. Knowledge and Behavior of Antibiotics from the Perspective of One Heath among Senior University Students in Kunming. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20211003 |
| [14] | Xiao-qin LI, Min ZHOU, Lin WANG, Hai-yan ZENG, Peng-ju LUO, Li-jia LIN. Efficacy of PCR-reverse Dot Hybridization in Drug Resistance Gene Detection and Drug Sensitivity of BD960 Tuberculosis in Drug Resistance Tuberculosis Detection. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20201238 |
| [15] | Chen Lian Yong . . Journal of Kunming Medical University, |
| [16] | Dai Wei . . Journal of Kunming Medical University, |
| [17] | Wu Gao Li . . Journal of Kunming Medical University, |
| [18] | Hua Peng . . Journal of Kunming Medical University, |
| [19] | . Resistance Analysis and Epidemiological Survey of 878 Acinetobacter Baumannii Solates. Journal of Kunming Medical University, |
| [20] | . . Journal of Kunming Medical University, |