Citation: | Yunrong XU, Fei HE. Effect of Material Structure on Angiogenesis in Bone Regeneration[J]. Journal of Kunming Medical University. |
[1] |
卢承印, 罗志强, 简功辉, 等. H型血管促进成血管-成骨耦联在骨折愈合中作用机制的研究进展[J]. 华中科技大学学报(医学版), 2024, 53(1): 133-139.
|
[2] |
Kong X, Zheng T, Wang Z, et al. Remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues for bone repair[J]. Theranostics, 2024, 14(11): 4438-4461.
|
[3] |
Tsai Y H, Tseng C C, Lin Y C, et al. Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing[J]. Biomedical Journal, 2024, 48(2): 100750.
|
[4] |
Santoro A, Voto A, Fortino L, et al. Bone defect treatment in regenerative medicine: Exploring natural and synthetic bone substitutes[J]. International Journal of Molecular Sciences, 2025, 26(7): 3085.
|
[5] |
Dasari A, Xue J, Deb S. Magnetic nanoparticles in bone tissue engineering[J]. Nanomaterials, 2022, 12(5): 757. doi: 10.3390/nano12050757
|
[6] |
Jin H, Zhu X, Liu H, et al. Type-I collagen polypeptide-based composite nanofiber membranes for fast and efficient bone regeneration[J]. ACS Biomaterials Science & Engineering, 2024, 10(9): 5632-5640.
|
[7] |
Chen K, Wang Y, Tang H, et al. Fabrication of a nanoscale Magnesium/Copper metal-organic framework on Zn-based guided bone generation membranes for enhancing osteogenesis, angiogenesis, and bacteriostasis properties[J]. ACS Applied Materials & Interfaces, 2024, 16(5): 5648-5665.
|
[8] |
谢庆晟, 于海洋, 马涛, 等. 外泌体在成血管成骨偶联中作用的研究[J]. 中国骨质疏松杂志, 2024, 30(12): 1810-1814.
|
[9] |
Lv N, Zhou Z, Hou M, et al. Research progress of vascularization strategies of tissue-engineered bone[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11(9): 1291969. doi: 10.3389/fbioe.2023.1291969
|
[10] |
Jin S, Wen J, Zhang Y, et al. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis[J]. Acta Biomaterialia, 2024, 177(5): 91-106. doi: 10.1016/j.actbio.2024.01.043
|
[11] |
Liu C, Zhou Y, Sun M, et al. Light-induced cell alignment and harvest for anisotropic cell sheet technology[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36513-36524.
|
[12] |
Nambiar J, Jana S, Nandi S K. Strategies for enhancing vascularization of biomaterial-based scaffold in bone regeneration[J]. The Chemical Record, 2022, 22(6): e202200008. doi: 10.1002/tcr.202200008
|
[13] |
Luo Y, Zheng Y, Chen Z, et al. Proangiogenic effect and underlying mechanism of holmium oxide nanoparticles: A new biomaterial for tissue engineering[J]. Journal of Nanobiotechnology, 2024, 22(1): 357. doi: 10.1186/s12951-024-02642-x
|
[14] |
Wang M, Chen J, Luo Y, et al. Design strategies and application potential of multifunctional hydrogels for promoting angiogenesis[J]. International Journal of Nanomedicine, 2024, 19(11): 12719-12742. doi: 10.2147/IJN.S495971
|
[15] |
王嘉旎, 陈俊宇. 金属离子促血管生成机制及在骨组织工程中的应用[J]. 中国组织工程研究, 2024, 28(5): 804-812.
|
[16] |
Mahapatra C, Kumar P, Paul M K, et al. Angiogenic stimulation strategies in bone tissue regeneration[J]. Tissue and Cell, 2022, 79(12): 101908. doi: 10.1016/j.tice.2022.101908
|
[17] |
Shi J, Dai W, Gupta A, et al. Frontiers of hydroxyapatite composites in bionic bone tissue engineering[J]. Materials, 2022, 15(23): 8475. doi: 10.3390/ma15238475
|
[18] |
Hayashi K, Munar M L, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration[J]. Materials Science and Engineering: C, 2020, 111(6): 110848. doi: 10.1016/j.msec.2020.110848
|
[19] |
Ortiz R, Aurrekoetxea-Rodrguez I, Rommel M, et al. Laser surface microstructuring of a bio-resorbable polymer to anchor stem cells, control adipocyte morphology, and promote osteogenesis[J]. Polymers, 2018, 10(12): 1337. doi: 10.3390/polym10121337
|
[20] |
谢小蔓, 付钰澳, 王忠林, 等. 生物力学在调控成骨细胞生物特性机制中的研究进展[J]. 湖北医药学院学报, 2024, 43(6): 702-708.
|
[21] |
Choisez A, Ishihara S, Ishii T, et al. Matrix stiffness regulates the triad communication of adipocytes/macrophages/endothelial cells through CXCL13[J]. Journal of Lipid Research, 2024, 65(9): 100620. doi: 10.1016/j.jlr.2024.100620
|
[22] |
Schunk C T, Wang W, Sabo L N, T et al. Matrix stiffness increases energy efficiency of endothelial cells[J]. Matrix Biology, 2024, 133(11): 77-85. doi: 10.1016/j.matbio.2024.08.004
|
[23] |
Chen W, Tian B, Liang J, et al. Matrix stiffness regulates the interactions between endothelial cells and monocytes[J]. Biomaterials, 2019, 221(11): 119362. doi: 10.1016/j.biomaterials.2019.119362
|
[24] |
Zhang Y, Dai J, Hang R, et al. Tailoring surface stiffness to modulate senescent macrophage immunomodulation: Implications for osteo-/angio-genesis in aged bone regeneration[J]. Biomaterials Advances, 2024, 165(12): 214010. doi: 10.1016/j.bioadv.2024.214010
|
[25] |
Shayan M, Huang M S, Navarro R, et al. Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function[J]. Journal of Biomedical Materials Research Part A, 2023, 111(7): 896-909. doi: 10.1002/jbm.a.37520
|
[26] |
Li Y B, Zhang H Q, Lu Y P, et al. Construction of magnesium phosphate chemical conversion coatings with different microstructures on titanium to enhance osteogenesis and angiogenesis[J]. ACS Applied Materials & Interfaces, 2024, 16(17): 21672-21688.
|
[27] |
Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis[J]. Bioactive Materials, 2023, 20(5): 16-28. doi: 10.1016/j.bioactmat.2022.05.011
|
[28] |
Liu C, Lou Y, Sun Z, et al. 4D printing of personalized-tunable biomimetic periosteum with anisotropic microstructure for accelerated vascularization and bone healing[J]. Advanced Healthcare Materials, 2023, 12(22): e2202868. doi: 10.1002/adhm.202202868
|
[29] |
Kim T H, Kim S H, Leong K W, et al. Nanografted substrata and triculture of human pericytes, fibroblasts, and endothelial cells for studying the effects on angiogenesis[J]. Tissue Engineering Part A, 2016, 22(7-8): 698-706. doi: 10.1089/ten.tea.2015.0461
|
[30] |
Duan R, Zhang Y, van Dijk L, et al. Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates[J]. Materials Science and Engineering: C, 2021, 122(5): 111948. doi: 10.1016/j.msec.2021.111948
|
[31] |
Jin S, Yang R, Chu C, et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration[J]. Acta Biomaterialia, 2021, 129(7): 148-158. doi: 10.1016/j.actbio.2021.05.042
|
[32] |
Patel K D, Kim T H, Mandakhbayar N, et al. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell-and tissue-regulatory responses[J]. Acta Biomaterialia, 2020, 108(5): 97-110. doi: 10.1016/j.actbio.2020.03.012
|
[33] |
Chen Y, Chen S, Kawazoe N, et al. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks[J]. Scientific Reports, 2018, 8(1): 14143. doi: 10.1038/s41598-018-32495-y
|
[34] |
Tian T, Zhang T, Lin Y, et al. Vascularization in craniofacial bone tissue engineering[J]. Journal of Dental Research, 2018, 97(9): 969-976. doi: 10.1177/0022034518767120
|
[35] |
Huang J, Han Q, Cai M, et al. Effect of angiogenesis in bone tissue engineering[J]. Annals of Biomedical Engineering, 2022, 50(8): 898-913. doi: 10.1007/s10439-022-02970-9
|
[36] |
Gu J, Zhang Q, Geng M, et al. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue[J]. Bioactive Materials, 2021, 6(10): 3254-3268. doi: 10.1016/j.bioactmat.2021.02.033
|
[37] |
Zhang M, Huang Z, Wang X, et al. Personalized PLGA/BCL scaffold with hierarchical porous structure resembling periosteum-bone complex enables efficient repair of bone defect[J]. Advanced Science, 2024, 11(35): e2401589.
|
[38] |
Bobbert F S L, Zadpoor A A. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone[J]. Journal of Materials Chemistry B, 2017, 5(31): 6175-6192. doi: 10.1039/C7TB00741H
|
[39] |
Druecke D, Langer S, Lamme E, et al. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy[J]. Journal of Biomedical Materials Research Part A, 2003, 68A(1): 10-18.
|
[40] |
Feng B, Jinkang Z, Zhen W, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecturein vivo[J]. Biomedical Materials, 2011, 6(1): 015007. doi: 10.1088/1748-6041/6/1/015007
|
[41] |
Walthers C M, Nazemi A K, Patel S L, et al. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle[J]. Biomaterials, 2014, 35(19): 5129-5137. doi: 10.1016/j.biomaterials.2014.03.025
|
[42] |
Huang G J, Yu H P, Wang X L, et al. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization[J]. Journal of Materials Chemistry B, 2021, 9(5): 1277-1287. doi: 10.1039/D0TB02288H
|
[43] |
Somo S I, Akar B, Bayrak E S, et al. Pore interconnectivity influences growth factor-mediated vascularization in sphere-templated hydrogels[J]. Tissue Engineering Part C: Methods, 2015, 21(8): 773-785. doi: 10.1089/ten.tec.2014.0454
|
[44] |
Lian M, Sun B, Han Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration[J]. Biomaterials, 2021, 274(7): 120841. doi: 10.1016/j.biomaterials.2021.120841
|
[45] |
Doyle S E, Pannella M, Onofrillo C, et al. NEST3D printed bone-mimicking scaffolds: Assessment of the effect of geometrical design on stiffness and angiogenic potential[J]. Frontiers in Cell and Developmental Biology, 2024, 12(5): 1353154. doi: 10.3389/fcell.2024.1353154
|
[46] |
Cai Z, Qu C, Song W, et al. Hierarchical chiral calcium silicate hydrate films promote vascularization for tendon-to-bone healing[J]. Advanced Materials, 2024, 36(31): e2404842. doi: 10.1002/adma.202404842
|
[47] |
廖红兵, 麦昱颖. 骨增量材料中血管新生性能的作用及认识[J]. 中国口腔种植学杂志, 2024, 29(2): 150-158.
|
[1] | Qitang LI, Xingfei DAI, Qingdong ZHANG, Rongshuang YAN, Cheng PAN, Derui FEI, Yujian MA, Shixin XU, Ying ZHANG. Histological and Ultrastructural Studies of Lung Tissues in A Piglet Model of Early Onset Scoliosis with Combination of the Thoracic Insufficiency Syndrome. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240504 |
[2] | Zheng JIA, Zhengjiang XING, Qian LIU, Yibin DU, Bing LI, Ying XIE, Yi ZHAO. Observation and Analysis of Coronary Microcirculation by Establishing Rat Myocardial Ischemia and in Vitro CMECs Hypoxia Model. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20241106 |
[3] | Zhixiao LI, Xia ZHENG, Chunling LI, Qingsheng LIU, Heng ZHANG. The Molecular Mechanism of miR-205-5p Targeting ERBB3 to Regulate PI3K/AKT/mTOR Pathway and Inhibit Angiogenesis in Hemorrhoids. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20240604 |
[4] | Rongyu YANG, Fei SONG, Hao HUANG, Kaiwen DUAN, Yingying XIANG. Application of Bone Marrow Mesenchymal Stem Cells in Stomatology. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20230323 |
[5] | Yunrong XU, Ziwen TANG, Fei HE. Molecular Mechanisms of Osteogenesis Promoted by Bone Repair Materials. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20231007 |
[6] | Jian ZHAO, Jiubing XIE, Liankai ZHAO. Effects of Ranibizumab and Odix on the Microvascular Structure of the Macular Region. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220930 |
[7] | Zhenghong YANG, Mingjie NING, Daqian HE, Mengzhe YANG, Yongping HUANG, Yunchao HUANG. Effect of Surface Topography on Staphylococcus Epidermidis Biofilm Formation by Different 3D Printing Thickness of Biomaterials. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20220228 |
[8] | Jia-yun WANG, Juan-juan JI, Yun-hong LIN, Jian-zhong CHEN, Li-ming HE, Min HUANG, Xu-dong LI. A Study of the Anatomical Structure of the Mandibular Canal in the Mandible by Cone-beam Computed Tomography. Journal of Kunming Medical University, doi: 10.12259/j.issn.2095-610X.S20210104 |
[9] | Wang Hong Yu , Wei Dao , Wang Jin Kun , Yang Zhi Yong , Wang Wei Min , Ding Peng . . Journal of Kunming Medical University, |
[10] | Yang Shao Yan , Wu Lu , Zhang Su Xian . . Journal of Kunming Medical University, |
[11] | Tang Shi Cong , Chen Dong , Guo 瑢, Yang De Chun , Zhao Ying Zhu , Xie Lv , Zhang Qian , Liu De Quan , Wang Xiao Li , Tang Yi Yin . . Journal of Kunming Medical University, |
[12] | Xu Lin , Hu Min , Li Zhong Hui , Fan Jian Nan . . Journal of Kunming Medical University, |
[13] | He Li Ming , He Yong Wen . . Journal of Kunming Medical University, |
[14] | Zhu Huan Li . The Relationship of VASP Signaling Molecule and Colorectal Cancer. Journal of Kunming Medical University, |
[15] | Yang Ping . . Journal of Kunming Medical University, |
[16] | Shui Yan Qing . . Journal of Kunming Medical University, |
[17] | Zhao Yu Xin . . Journal of Kunming Medical University, |
[18] | Dai Lin . . Journal of Kunming Medical University, |
[19] | Yang Li Hua . . Journal of Kunming Medical University, |
[20] | . Application of Absorbable Internal Fixation Materials in 19 Cases of Jaw Fractures Fixation. Journal of Kunming Medical University, |