Turn off MathJax
Article Contents
Liyue REN, Mingzhi ZHAO, Sijie WANG, Qin LIU, Jiajia LIU. Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer[J]. Journal of Kunming Medical University.
Citation: Liyue REN, Mingzhi ZHAO, Sijie WANG, Qin LIU, Jiajia LIU. Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer[J]. Journal of Kunming Medical University.

Network Pharmacological Study on Active Compounds of Astragalus and Magnolia officinalis Against Prostate Cancer

  • Received Date: 2025-04-07
  •   Objective  To comprehensively analyze the mechanism of Astragalus and Magnolia officinalis in treating prostate cancer based on the principles of network pharmacology.   Methods  Active molecular targets of Astragalus and Magnolia officinalis were predicted using the TCMSP and SwissTargetPrediction databases. Prostate cancer-related targets were screened via Genecards, DisGeNET, and OMIM databases. A "disease-active ingredient-target" network was constructed using Venny software, identifying 69 candidate key target genes. A protein-protein interaction (PPI) network was built using the STRING database, followed by GO and KEGG enrichment pathway analyses performed with R language. Constructing a subcutaneous tumor model in nude mice through in vivo experiments and intervening with active ingredients from Astragalus membranaceus and Magnolia officinalis.  Results  Molecular docking analysis revealed that active components such as astragaloside IV (MOL000438) and honokiol (MOL000398) exhibited significant binding activity with the key target proteins of prostate cancer, including AKT1, ESR1, PPARG, PTGS2, and SRC. Notably, Honokiol demonstrated a binding energy of -8.7 kcal/mol with estrogen receptor α (ESR1, PDB:1a52), forming stable hydrogen bond interaction with the LEU-391 residue. The in vivo experiments further confirmed that the Astragalus-Magnolia active component group showed smaller subcutaneous xenograft tumor volumes in nude mice as compared to the model group (P < 0.05). Immunohistochemical analysis revealed significant downregulation of PPARG and PTGS2 protein expression in tumor tissues (P < 0.05). QPCR results indicated that the formula bidirectionally regulated gene expression: pro-apoptotic factor AKT1 was upregulated (P < 0.05), while cancer-associated genes PTGS2, PPARG, SRC, and ESR1 were downregulated (P < 0.05).   Conclusion  The combination of Astragalus and Magnolia may exert anti-prostate cancer effects through multi-target and multi-pathway synergistic mechanisms, demonstrating favorable binding activity and therapeutic potential.
  • loading
  • [1]
    Rawla P. Epidemiology of prostate cancer[J]. World J Oncol., 2019, 10(2): 63-89. doi: 10.14740/wjon1191
    [2]
    闵淑慧, 胡依, 郭芮绮, 等. 1990-2019年中国前列腺癌疾病负担分析及趋势预测[J]. 中国肿瘤, 2023, 32(3): 171-177. doi: 10.11735/j.issn.1004-0242.2023.03.A002
    [3]
    中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)前列腺癌诊疗指南 2024 [M]. 北京: 人民卫生出版社, 2024.
    [4]
    陈炽炜, 林曼迪, 刘昊, 等. 去势抵抗性前列腺癌患者的中医证型分布及其早期进展原因的多因素分析[J]. 广州中医药大学学报, 2020, 37(7): 1241-1247.
    [5]
    程晓金, 王春洋, 牛潇菲, 等. 基于网络药理学和分子对接法探讨黄芪治疗前列腺癌的机制[J]. 临床医学进展, 2022, 12(9): 8695-8706.
    [6]
    Wang XF, Liu QQ, Fu YF, et al. Magnolol as a potential anticancer agent: A proposed mechanistic insight[J]. Molecules, 2022, 27(19): 6441. doi: 10.3390/molecules27196441
    [7]
    刘樊, 粟宏伟. 中医药治疗前列腺癌研究进展[J]. 海南医学, 2018, 29(20): 2946-2949. doi: 10.3969/j.issn.1003-6350.2018.20.040
    [8]
    陈海群, 华其荣, 林军, 等. 女贞子-黄芪治疗转移性去势抵抗性前列腺癌的网络药理学机制[J]. 广西科学, 2023, 30(5): 1017-1024.
    [9]
    张瑶, 李小江, 贾英杰. 中医“健脾利湿化瘀法”在前列腺癌治疗中的运用[J]. 天津中医药, 2021, 38(3): 317-321.
    [10]
    Li WN, Jiang HL, Zhang WN, et al. Mechanisms of action of Sappan lignum for prostate cancer treatment: network pharmacology, molecular docking and experimental validation [J]. Frontiers in Pharmacology, 2024, 15 1407525-1407525.
    [11]
    Wu LT, Chen Y, Chen MJ, et al. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Astragalus-Scorpion against prostate cancer.[J]. Andrologia, 2021, 53(9): e14165-e14165.
    [12]
    张瑶, 李家合. PI3K/AKT信号通路与前列腺癌关系的研究进展[J]. 肿瘤学杂志, 2021, 27(2): 153-157. doi: 10.11735/j.issn.1671-170X.2021.02.B012
    [13]
    Li X, Wu LH, Liu W, et al. A network pharmacology study of Chinese Medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action[J]. Plos One, 2014, 9(5): e95004. doi: 10.1371/journal.pone.0095004
    [14]
    Zhang H, Tang J, Cao HL, et al. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach [J]. Journal of Ethnopharmacology 2025, 338 (Pt 1): 119007.
    [15]
    Ma Q, Lu XJ, Tian W, et al. Astragaloside Ⅳ mediates the effect and mechanism of KPNB1 on biological behavior and tumor growth in prostate cancer[J]. Heliyon, 2024, 10(13): e33904-e33904. doi: 10.1016/j.heliyon.2024.e33904
    [16]
    Guo SQ, Ma BJ, Jiang XK, et al. Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer[J]. Frontiers in Pharmacology, 2020, 11: 598. doi: 10.3389/fphar.2020.00598
    [17]
    Kou DQ, Jiang YL, Qin JH, et al. Magnolol attenuates the inflammation and apoptosis through the activation of SIRT1 in experimental stroke rats [J]. Pharmacological Reports, 2017: 642-647.
    [18]
    Hsu FT, Liu WL, Lee SR, et al. Unveiling nature's potential weapon: Magnolol's role in combating bladder cancer by upregulating the miR-124 and inactivating PKC-δ/ERK axis[J]. Phytomedicine., 2023, 119: 154947. doi: 10.1016/j.phymed.2023.154947
    [19]
    Chan MH, Chen HH, Lo YC, et al. Effectiveness in the block by honokiol, a dimerized allylphenol from Magnolia officinalis, of hyperpolarization-Activated cation current and delayed-rectifier K+ current[J]. International Journal of Molecular Sciences, 2020, 21(12): 4260. doi: 10.3390/ijms21124260
    [20]
    张明发, 沈雅琴. 厚朴酚抗肿瘤药理作用及其机制的研究进展[J]. 抗感染药学, 2022, 19(6): 783-787.
  • Relative Articles

    [1] Wei WANG, Sheng LIU, Hongqing ZHOU, Mingsheng LIU, Pingbo XIE, Feng GUO, Guanyu CHEN. Clinical Efficacy of Immediate Radical Surgery for Locally Advanced Prostate Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20250106
    [2] Yanhong YANG, Juan HE, Shan JIN, Piaopiao YE, Xin LI, Li QIAO. Prediction of Psoriasis and Potential Treatment of Traditional Chinese Medicine Based on Reverse Network Pharmacology Analysis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20241207
    [3] Shaoyou DENG, Rong LI, Jintao LI, Yulan ZHAO, Peijin WANG, Hong ZHENG. Mechanism of Osteoking Improving Osteoarthritis based on Network Pharmacology and DDM Rats. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230701
    [4] Ranxi SHI, Tao YANG, Qing CHENG, Liangchen ZHAO, Jiahui GUO, Limei WANG. Mechanism of Dendrobium Officinale Against Inflammatory Aging Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20231101
    [5] Hualei DAI, Chengcheng HU, Guimin ZHANG, Siming TAO, Jiankun CHEN. Screening Biomarkers of Astragalus Membranaceus for Hypertensive Ventricular Remodeling Based on Network Pharmacology and Molecular Docking. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230819
    [6] Bin ZHAO, Yuanpeng DUAN, Guoying ZHANG, Chengwei BI, Libo YANG, Zhiyu SHI, Yong YANG, Jianpeng ZHANG, Ting GAO. CircRNA EZH2 Promotes Proliferation and Migration of Prostate Cancer Cells by Regulating miR-30c-5p. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220731
    [7] Li ZHANG, Yuting WANG, Jianing SHI, Dan YU, Renhua YANG, Zhiqiang SHEN, Jiang LONG, Peng CHEN. Network Pharmacology-based Analysis of the Anti-atherosclerosis Mechanism of Scutellarin and Experimental Validation in Vivo. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220804
    [8] Sun Jian Wei , Wang Jian Song , Liu Zi Chao , Zheng Li Min . . Journal of Kunming Medical University,
    [9] Li Hui , Ping Qin Rong , Shi Yun Qiang , Wang Chun Hui , Yang Yang , Hu Li Bing , Bi Xiao Fang , Li Jian , Zhong Yi Ming . . Journal of Kunming Medical University,
    [10] Ran Zhen , Zhu Yun Sha , Hai Bing , Zhang Jing Song . Relationship between the Proportion of Tumor Infiltrating Lymphocytes in Tumor Mass and Postoperative Recurrence of Prostate Carcinoma. Journal of Kunming Medical University,
    [11] Zhao Bin , Li Rui Qian , Zhang Guo Ying , Lei Yong Hong , Wang Qi Lin , Liu Zhi Min . Overexpression of miR-4328 Inhibits the Proliferation, Migration and Epithelial Mesenchymal Transition of Prostate Cancer Cells. Journal of Kunming Medical University,
    [12] Ma Yin Rui . . Journal of Kunming Medical University,
    [13] Shen Hong . . Journal of Kunming Medical University,
    [14] Zhang Jing Song . . Journal of Kunming Medical University,
    [15] Liu Xiao Dong . . Journal of Kunming Medical University,
    [16] Lei Jing . . Journal of Kunming Medical University,
    [17] Liu Peng Jie . . Journal of Kunming Medical University,
    [18] Du Xiong . . Journal of Kunming Medical University,
    [19] Sun Jian Wei . . Journal of Kunming Medical University,
    [20] . Value of Contrast-enhanced Ultrasound in Diagnosis of Prostate Cancer. Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return