留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S100A9-RAGE/TLR4信号轴调控非小细胞肺癌脑转移和内皮黏附的作用

徐益多 周彦琪 王健 龙江

徐益多, 周彦琪, 王健, 龙江. S100A9-RAGE/TLR4信号轴调控非小细胞肺癌脑转移和内皮黏附的作用[J]. 昆明医科大学学报.
引用本文: 徐益多, 周彦琪, 王健, 龙江. S100A9-RAGE/TLR4信号轴调控非小细胞肺癌脑转移和内皮黏附的作用[J]. 昆明医科大学学报.
Yiduo XU, Yanqi ZHOU, Jian WANG, Jiang LONG. Studies on the Role of S100A9-RAGE/TLR4 Signaling Axis in Regulating Brain Metastasis and Endothelial Adhesion of Non-Small Cell Lung Cancer[J]. Journal of Kunming Medical University.
Citation: Yiduo XU, Yanqi ZHOU, Jian WANG, Jiang LONG. Studies on the Role of S100A9-RAGE/TLR4 Signaling Axis in Regulating Brain Metastasis and Endothelial Adhesion of Non-Small Cell Lung Cancer[J]. Journal of Kunming Medical University.

S100A9-RAGE/TLR4信号轴调控非小细胞肺癌脑转移和内皮黏附的作用

基金项目: 云南省科技厅−昆明医科大学应用基础研究联合专项基金(202101AY070001−015);云南省兴滇英才支持计划名医专项基金(RLMY20220014);昆明医科大学研究生创新基金(2024S055)
详细信息
    作者简介:

    徐益多(1999~),女,重庆人,在读硕士研究生,主要从事颅内肿瘤的基础与临床研究工作

    通讯作者:

    龙江,E-mail:longjiang69@163.com

  • 中图分类号: R739.41

Studies on the Role of S100A9-RAGE/TLR4 Signaling Axis in Regulating Brain Metastasis and Endothelial Adhesion of Non-Small Cell Lung Cancer

  • 摘要:   目的  探究非小细胞肺癌(non-small cell lung cancer,NSCLC)来源S100A9调控侵袭转移及激活转移土壤脑微血管内皮的机制。  方法  使用R语言提取TCGA数据库RNAseq数据,采用配对样本T检验,分析S100A9在NSCLC组织和正常肺组织中的表达,用ggplot2包进行可视化;用survival包进行比例风险假设检验和拟合生存回归,比较S100A9高/低表达组之间的预后情况,用survminer包和ggplot2包进行可视化。RT-qPCR、Western Blot检测S100A9在NSCLC细胞系(A549、NCI-H1299)和正常肺上皮细胞(BEAS-2B)中的表达差异,利用A549细胞与人脑微血管内皮细胞(HCMEC/D3)共培养构建血瘤屏障BTB模型,并构建siS100A9敲低的A549细胞株,划痕愈合、Transwell实验检测不同处理组A549细胞的迁移、侵袭能力变化情况,CCK-8、流式细胞术检测不同浓度S100A9处理HCMEC/D3细胞后的增殖活性和对细胞周期的影响,RT-qPCR、Western Blot检测不同浓度S100A9处理hCMEC/D3细胞后对土壤传感器受体RAGE、TLR4和肿瘤跨内皮迁移相关黏附分子ICAM-1、VCAM-1、ALCAM的表达变化,并通过CCK-8、RT-qPCR、Western Blot检测FPS-ZM1、TAK242预阻滞RAGE、TLR4通路后,对不同浓度S100A9刺激下hCMEC/D3细胞的增殖活性和黏附分子表达的回复情况。  结果  TCGA数据库RNAseq数据挖掘与分析显示,肺癌组织样本中S100A9表达显著高于正常肺组织样本(P = 0.03)Kaplan-Meier生存曲线图显示,S100A9高表达组的生存概率低于S100A9低表达组,提示S100A9高表达与患者更差的总体生存期显著相关[HR = 1.46 (1.10~1.95),P = 0.01]。在细胞实验中,S100A9在NSCLC细胞系中高表达(P < 0.05),敲低S100A9能抑制A549细胞的迁移和侵袭(P < 0.05),敲低组在6、12、24、36、48 h的平均迁移抑制率为80.61%、75.70%、73.78%、69.54%、56.96%,平均侵袭抑制率为57.38%(48 h),同时S100A9靶向正调控BTB模型中hCMEC/D3细胞的增殖活性和细胞周期(P < 0.05)。在机制上,S100A9通过土壤传感器受体RAGE、TLR4促进A549与hCMEC/D3交互通讯,上调hCMEC/D3细胞的ICAM-1、VCAM-1、ALCAM表达(P < 0.05),回复实验证实S100A9-RAGE/TLR4调控轴能够影响肺癌脑转移的内皮黏附过程(P < 0.05)。  结论  S100A9-RAGE/TLR4与肺癌脑转移进展有关,敲低S100A9能抑制肺癌细胞的侵袭转移,阻滞下游土壤传感器受体RAGE、TLR4能减弱脑微血管内皮的增殖生长,并抑制肺癌细胞与脑微血管内皮之间形成预转移黏附微环境,对开发肺癌脑转移的早期诊断和治疗靶点具有潜在意义。
  • 图  1  TCGA公共数据库分析S100A9表达差异及S100A9高/低表达组的预后情况

    A:S100A9在正常肺组织(Normal)和肿瘤组织(Tumor)配对样本之间的表达差异图;B:Kaplan-Meier生存曲线图示S100A9高/低表达组之间的预后情况;*P < 0.05。

    Figure  1.  Analysis of the expression difference of S100A9 and the prognosis of S100A9 high/low expression groups in the TCGA public database

    图  2  NSCLC肺癌细胞和正常肺上皮细胞之间S100A9的表达差异

    A:RT-qPCR检测肺癌细胞和正常肺上皮细胞的S100A9 mRNA表达;B:S100A9免疫印迹代表图。C:WB检测肺癌细胞和正常肺上皮细胞的S100A9蛋白定量分析图;*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  2.  The expression difference of S100A9 between NSCLC lung cancer cells and normal lung epithelial cells

    图  3  NSCLC肺癌细胞与人脑血管内皮细胞共培养模型中S100A9随时间的表达变化

    A:RT-qPCR检测共培养0/4/8/12/24 h组S100A9 mRNA表达;B:S100A9免疫印迹代表图;C:WB检测共培养0/4/8/12/24 h组S100A9蛋白定量分析图;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001

    Figure  3.  The expression changes of S100A9 over time in the co-culture model of NSCLC lung cancer cells and human brain vascular endothelial cells

    图  4  RT-qPCR、WB验证siRNA-S100A9(si-1、si-2、si-3)的敲低效率

    A:RT-qPCR验证siRNA-S100A9的敲低效率;B:S100A9免疫印迹代表图;C:WB验证siRNA-S100A9敲低效率的蛋白定量分析图;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001

    Figure  4.  RT-qPCR and WB assays to verify the knockdown efficiency of siRNA-S100A9 (si-1,si-2,si-3)

    图  5  RT-qPCR、WB验证si-S100A9#3的敲低效率

    A:RT-qPCR验证si-S100A9#3的敲低效率;B:S100A9免疫印迹代表图;C:WB验证si-S100A9#3敲低效率的蛋白定量分析图;***P < 0.001。

    Figure  5.  RT-qPCR and WB assays to verify the knockdown efficiency of si-S100A9#3

    图  6  划痕实验检测敲低S100A9对肺癌细胞A549迁移能力的影响(40×)

    A:划痕实验检测S100A9不同处理后的A549细胞迁移能力;B:划痕试验统计图;*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  6.  Scoring experiment to detect the effect of knockdown of S100A9 on the migration ability of lung cancer cell line A549 (40×)

    图  7  Transwell实验检测敲低S100A9对肺癌细胞A549侵袭能力的影响(100×)

    A:Transwell实验检测S100A9不同处理后的A549细胞侵袭能力;B:侵袭实验统计图;****P < 0.0001

    Figure  7.  Transwell assay to investigate the effect of S100A9 knockdown on the invasion ability of lung cancer cell line A549 (100×)

    图  8  人重组S100A9对人脑微血管内皮hCMEC/D3增殖活力的影响

    *P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001

    Figure  8.  The effect of human recombinant S100A9 on the proliferation activity of human brain microvascular endothelial cells hCMEC/D3

    图  9  人重组S100A9对人脑微血管内皮hCMEC/D3细胞周期的影响

    A:人重组S100A9不同处理后的hCMEC/D3细胞周期;B:流式细胞周期分析图;**P < 0.01,***P < 0.001。

    Figure  9.  The effect of human recombinant S100A9 on the cell cycle of human brain microvascular endothelial cells hCMEC/D3

    图  10  CCK-8法检测使用FPS-ZM1和TAK242阻滞处理后,500 nM S100A9对脑微血管内皮hCMEC/D3的促增殖作用是否可逆

    *P < 0.05,**P < 0.01,***P < 0.001。

    Figure  10.  The CCK-8 method was used to detect whether the proliferative effect of 500 nM S100A9 on human brain microvascular endothelial hCMEC/D3 cells,induced by FPS-ZM1 and TAK242 blocking treatments,was reversible

    图  11  RT-qPCR、WB检测S100A9-RAGE/TLR4对脑微血管内皮hCMEC/D3细胞间黏附分子(ICAM-1)、血管间黏附分子(VCAM-1)、白细胞活化黏附因子(ALCAM)表达的影响

    A:RT-qPCR检测RAGE、TLR4和3种黏附分子的mRNA表达;B:RGAE、TLR4和3种黏附分子的免疫印迹代表图;C:WB检测RGAE、TLR4和3种黏附分子的蛋白定量分析图;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001

    Figure  11.  RT-qPCR and WB assays were used to investigate the effects of S100A9-RAGE/TLR4 on the expression of intercellular adhesion molecules (ICAM-1),vascular adhesion molecule (VCAM-1),and leukocyte-activating adhesion factor (ALCAM) in brain microvascular endothelial cells (hCMEC/D3)

    表  1  siRNA-S100A9三靶点合成序列

    Table  1.   siRNA-S100A9 three-target synthetic sequences

    名称 序列(5′-3′)
    si-S100A9(h)-1
    S:CCUCCCACGAGAAGAUGCA(dT)(dT)
    A:UGCAUCUUCUCGUGGGAGG(dT)(dT)
    si-S100A9(h)-2
    S:GCAACAUAGAGACCAUCAU(dT)(dT)
    A:AUGAUGGUCUCUAUGUUGC(dT)(dT)
    si-S100A9(h)-3
    S:GCUGAGCUUCGAGGAGUUCAU
    A:AUGAACUCCUCGAAGCUCAGC
    下载: 导出CSV

    表  2  引物序列

    Table  2.   Primer sequences

    名称 序列(5′-3′)
    S100A9 F:CTTCCACCAATACTCTGT
    R:TCATTCTTATTCTCCTTCTTG
    RAGE F:CAATGAACAGGAATGGAA
    R:AGAGGCAGAATCTACAAT
    TLR4 F:TCAGTGTGCTTGTAGTAT
    R:CCTGGCTTGAGTAGATAA
    ICAM-1 F:CAAGAAGATAGCCAACCAATG
    R:CAGTACACGGTGAGGAAG
    VCAM-1 F:GGAGTATATGAATGTGAATCTAA
    R:ATGGCAGGTATTATTAAGGA
    ALCAM F:AATAGTCAAGGTGTTCAAG
    R:CATCTGGATAACTGTCTTC
    GAPDH F:AAAGGGTCATCATCTCTG
    R:GCTGTTGTCATACTTCTC
    下载: 导出CSV
  • [1] Wang Z,Wang Y,Chang M,et al. Single-cell transcriptomic analyses provide insights into the cellular origins and drivers of brain metastasis from lung adenocarcinoma[J]. Neuro Oncol,2023,25(7):1262-1274. doi: 10.1093/neuonc/noad017
    [2] Jiang J,Wu L,Yuan F,et al. Characterization of the immune microenvironment in brain metastases from different solid tumors[J]. Cancer Med,2020,9(7):2299-2308. doi: 10.1002/cam4.2905
    [3] Kastner J,Hossain R,White C S. Epidemiology of lung cancer[J]. Semin Roentgenol,2020,55(1):23-40. doi: 10.1053/j.ro.2019.10.003
    [4] Khalifa J,Amini A,Popat S,et al. Brain metastases from NSCLC:Radiation therapy in the era of targeted therapies[J]. J Thorac Oncol,2016,11(10):1627-1643. doi: 10.1016/j.jtho.2016.06.002
    [5] Hsu F,De Caluwe A,Anderson D,et al. EGFR mutation status on brain metastases from non-small cell lung cancer[J]. Lung Cancer,2016,96:101-107.
    [6] Rangachari D,Yamaguchi N,VanderLaan P A,et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers[J]. Lung Cancer,2015,88(1):108-111. doi: 10.1016/j.lungcan.2015.01.020
    [7] Biswas A K,Han S,Tai Y,et al. Targeting S100A9-ALDH1A1-retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer[J]. Cancer Discov,2022,12(4):1002-1021. doi: 10.1158/2159-8290.CD-21-0910
    [8] Fares J,Ulasov I,Timashev P,et al. Emerging principles of brain immunology and immune checkpoint blockade in brain metastases[J]. Brain,2021,144(4):1046-1066. doi: 10.1093/brain/awab012
    [9] Izraely S,Ben-Menachem S,Sagi-Assif O,et al. The metastatic microenvironment:Melanoma-microglia cross-talk promotes the malignant phenotype of melanoma cells[J]. Int J Cancer,2019,144(4):802-817. doi: 10.1002/ijc.31745
    [10] Sprowls S A,Arsiwala T A,Bumgarner J R,et al. Improving CNS delivery to brain metastases by blood-tumor barrier disruption[J]. Trends Cancer,2019,5(8):495-505. doi: 10.1016/j.trecan.2019.06.003
    [11] Yin W,Zhao Y,Kang X,et al. BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFRT790M mutation[J]. Theranostics,2020,10(14):6122-6135. doi: 10.7150/thno.42234
    [12] Grum-Schwensen B,Klingelhöfer J,Beck M,B et al. S100A4-neutralizing antibody suppresses spontaneous tumor progression,pre-metastatic niche formation and alters T-cell polarization balance[J]. BMC Cancer,2015,15:44.
    [13] Kinoshita R,Sato H,Yamauchi A,et al. exSSSRs (extracellular S100 soil sensor receptors)-Fc fusion proteins work as prominent decoys to S100A8/A9-induced lung tropic cancer metastasis[J]. Int J Cancer,2019,144(12):3138-3145. doi: 10.1002/ijc.31945
    [14] Kinoshita R,Sato H,Yamauchi A,et al. Newly developed anti-S100A8/A9 monoclonal antibody efficiently prevents lung tropic cancer metastasis[J]. Int J Cancer,2019,145(2):569-575. doi: 10.1002/ijc.31982
    [15] Kim D H,Gu A,Lee J S,et al. Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma[J]. Int J Med Sci,2020,17(4):498-509. doi: 10.7150/ijms.37833
    [16] Sakaguchi M,Yamamoto M,Miyai M,et al. Identification of an S100A8 receptor neuroplastin-β and its heterodimer formation with EMMPRIN[J]. J Invest Dermatol,2016,136(11):2240-2250. doi: 10.1016/j.jid.2016.06.617
    [17] Sumardika I W,Chen Y,Tomonobu N,et al. Neuroplastin-β mediates S100A8/A9-induced lung cancer disseminative progression[J]. Mol Carcinog,2019,58(6):980-995. doi: 10.1002/mc.22987
    [18] Ruma I M,Putranto E W,Kondo E,et al. MCAM,as a novel receptor for S100A8/A9,mediates progression of malignant melanoma through prominent activation of NF-κB and ROS formation upon ligand binding[J]. Clin Exp Metastasis,2016,33(6):609-627. doi: 10.1007/s10585-016-9801-2
    [19] Chen Y,Sumardika I W,Tomonobu N,et al. Melanoma cell adhesion molecule is the driving force behind the dissemination of melanoma upon S100A8/A9 binding in the original skin lesion[J]. Cancer Lett,2019,452:178-190.
    [20] Chen Y,Sumardika I W,Tomonobu N,et al. Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness[J]. Neoplasia,2019,21(7):627-640. doi: 10.1016/j.neo.2019.04.006
    [21] Sumardika I W,Chen Y,Tomonobu N,et al. Neuroplastin-β mediates S100A8/A9-induced lung cancer disseminative progression[J]. Mol Carcinog,2019,58(6):980-995. doi: 10.1002/mc.22987
    [22] Oesterle A,Bowman M A. S100A12 and the S100/calgranulins:Emerging biomarkers for atherosclerosis and possibly therapeutic targets[J]. Arterioscler Thromb Vasc Biol,2015,35(12):2496-2507. doi: 10.1161/ATVBAHA.115.302072
    [23] Wang K,Dong S,Higazy D,et al. Inflammatory environment promotes the adhesion of tumor cells to brain microvascular endothelial cells[J]. Front Oncol,2021,11:691771.
    [24] Münsterberg J,Loreth D,Brylka L,et al. ALCAM contributes to brain metastasis formation in non-small-cell lung cancer through interaction with the vascular endothelium[J]. Neuro Oncol,2020,22(7):955-966. doi: 10.1093/neuonc/noaa028
    [25] Cai X,Luo J,Yang X,et al. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration,inflammation and decreased adhesion[J]. Oncotarget,2015,6(26):22905-22917. doi: 10.18632/oncotarget.4416
    [26] Tang Z,Guo D,Xiong L,et al. TLR4/PKCα/occludin signaling pathway may be related to blood‑brain barrier damage[J]. Mol Med Rep,2018,18(1):1051-1057. doi: 10.3892/mmr.2018.9025
    [27] Zhong X,Xie F,Chen L,et al. S100A8 and S100A9 promote endothelial cell activation through the RAGE‑mediated mammalian target of rapamycin complex 2 pathway[J]. Mol Med Rep,2020,22(6):5293-5303. doi: 10.3892/mmr.2020.11595
    [28] Liu J,Lichtenberg T,Hoadley K A,et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics[J]. Cell,2018,173(2):400-416. doi: 10.1016/j.cell.2018.02.052
    [29] Zhang Z,Huang W,Hu D,et al. E-twenty-six-specific sequence variant 5 (ETV5) facilitates hepatocellular carcinoma progression and metastasis through enhancing polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC)-mediated immunosuppression[J]. Gut,2025,74(7):1137-1149. doi: 10.1136/gutjnl-2024-333944
    [30] Pearson-Gallion B,Finney A C,Scott M L,et al. Fibronectin-dependent integrin signaling drives EphA2 expression in vascular smooth muscle cells[J]. Am J Physiol Cell Physiol,2025,328(5):C1623-C1636. doi: 10.1152/ajpcell.01021.2024
    [31] Chen Y H,Chu C C,Liu J F,et al. C-X-C motif ligand 1 induces cell migration by upregulating ICAM-1 expression by activating PI3K/Akt and NF-κB signaling pathway in liver cancer[J]. Adv Biol (Weinh),2025,9(3):e2400295. doi: 10.1002/adbi.202400295
    [32] Wu L D,Shi Y,Kong C H,et al. The GRK2/AP-1 signaling axis mediates vascular endothelial dysfunction and atherosclerosis induced by oscillatory low shear stress[J]. Adv Sci (Weinh),2025,10:e01981.
  • [1] 余会敏, 辛鑫, 梁志伟.  KIAA1199基因和Linc00673基因对非小细胞肺癌化疗疗效的预测价值分析, 昆明医科大学学报. 2025, 46(1): 111-116. doi: 10.12259/j.issn.2095-610X.S20250115
    [2] 李盈甫, 郭妮, 罗正光, 邢安灏, 李太福, 马千里.  EGFR基因多态性与云南汉族人群非小细胞肺癌的关联性, 昆明医科大学学报. 2025, 46(4): 99-108. doi: 10.12259/j.issn.2095-610X.S20250413
    [3] 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里.  ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性, 昆明医科大学学报. 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
    [4] 张彩妮, 李娅.  卡瑞利珠联合化疗治疗非小细胞肺癌的有效性及安全性Meta分析, 昆明医科大学学报. 2024, 45(6): 75-84. doi: 10.12259/j.issn.2095-610X.S20240610
    [5] 梁燕, 王磊, 雷鸣, 陈本超, 孙萍, 李帅, 刘莉, 王倩蓉, 廖曼霖, 马千里.  KRAS基因多态性与云南汉族人群非小细胞肺癌的相关性分析, 昆明医科大学学报. 2023, 44(2): 52-60. doi: 10.12259/j.issn.2095-610X.S20230210
    [6] 李春桃, 张雪梅, 苏琰迪, 张剑青.  过表达及敲减LncRNA RP11-521C20.3的非小细胞肺癌A549稳转细胞株的构建, 昆明医科大学学报. 2023, 44(10): 1-9. doi: 10.12259/j.issn.2095-610X.S20231016
    [7] 杨佳, 李娅娴, 王莹莹, 肖琳, 李传印, 谭芳, 马千里, 刘舒媛.  云南汉族人群mircoRNA-149、mircoRNA-219、mircoRNA-let-7基因多态性与非小细胞肺癌发生和发展的相关性, 昆明医科大学学报. 2021, 42(10): 22-28. doi: 10.12259/j.issn.2095-610X.S20211037
    [8] 王应霞, 何琴, 王国芳, 张旋.  非小细胞肺癌中microRNA-21和EGFR的表达及意义, 昆明医科大学学报. 2021, 42(8): 101-105. doi: 10.12259/j.issn.2095-610X.S20210818
    [9] 王娟, 苏国苗, 潘国庆, 边莉, 杨哲, 曾定涛.  云南地区非小细胞肺癌EGFR、ALK和ROS1基因突变联合检测, 昆明医科大学学报. 2020, 41(09): 1-6.
    [10] 马晓骉, 罗峰, 高永亮, 郝静超.  CIK细胞免疫疗法联合化疗治疗非小细胞肺癌的临床疗效, 昆明医科大学学报. 2020, 41(12): 60-67. doi: 10.12259/j.issn.2095-610X.S20201215
    [11] 朱中山, 严文辉, 李小兵, 杨洲, 白鹏.  200例肺腺癌脑转移患者驱动基因突变情况及预后关系, 昆明医科大学学报. 2018, 39(08): 47-50.
    [12] 黄赛君, 葛菲, 陈文林, 李云茜, 谭林彦, 王曦.  MMP-1在乳腺癌脑转移中的作用研究进展, 昆明医科大学学报. 2018, 39(12): 125-129.
    [13] 张智显, 顾后, 林劼, 雷学芬, 江利锋, 李楠, 路欣妍, 李亭葶.  伽玛刀联合阿帕替尼及替莫唑胺治疗肺癌脑转移的疗效, 昆明医科大学学报. 2018, 39(12): 65-68.
    [14] 唐诗聪, 潘泓, 黄耀元, 周鑫, 王守峰, 左传田, 茅乃权.  人非小细胞肺癌裸鼠移植瘤模型的建立, 昆明医科大学学报. 2017, 38(02): 28-32.
    [15] 周九鹏.  完全切除的非小细胞肺癌脑转移危险因素分析, 昆明医科大学学报. 2015, 36(10): -.
    [16] 周喆焱.  E-cadherin对非小细胞肺癌的转移和靶向治疗的影响, 昆明医科大学学报. 2014, 35(04): -.
    [17] 李华.  大鼠脑微血管内皮细胞的原代培养, 昆明医科大学学报. 2012, 33(12): -.
    [18] 非小细胞肺癌并恶性心包腔积液双路径化疗临床疗效分析, 昆明医科大学学报. 2011, 32(04): -.
    [19] 杨芳.  两种不同形式的TNF相关凋亡诱导配体对非小细胞肺癌作用的研究, 昆明医科大学学报. 2009, 30(01): -.
    [20] 张兰凤.  易瑞沙治疗晚期非小细胞肺癌的临床观察, 昆明医科大学学报. 2007, 28(06): -.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  55
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 网络出版日期:  2025-08-13

目录

    /

    返回文章
    返回