PCK2 Promotes Malignant Phenotypes of Non-Small Cell Lung Cancer Cells via SLC38A2-Mediated Glutamine Uptake
-
摘要:
目的 探讨在低糖环境下,磷酸烯醇式丙酮酸羧激酶2(phosphoenolpyruvate carboxykinase2,PCK2)调控谷氨酰胺(glutamine,Gln)转运的分子机制及其对非小细胞肺癌(non-small cell lung cancer,NSCLC)细胞恶性行为的影响。 方法 在人NSCLC细胞系A549上构建PCK2稳定敲低细胞系(KD组)及阴性对照(NC组)。所有体外实验均独立重复3次 (n = 3)。采用PRM蛋白质组学、Western blot和双荧光素酶报告基因实验检测PCK2对溶质载体家族38成员2(solute carrier family 38 member 2,SLC38A2)转录和蛋白表达的影响。在低糖条件 ( 1000 mg/L葡萄糖) 下,通过MTT法、划痕实验和流式细胞术分析细胞增殖、迁移和凋亡。最后设置Gln补充组(KD+Gln组)和SLC38A2过表达组(KD+SLC38A2组)进行功能挽救实验。结果 PCK2敲低后,SLC38A2启动子活性下降约60%(P < 0.0001 ),蛋白表达亦显著降低(P < 0.01)。低糖条件下,KD组细胞增殖受抑制,24 h迁移率(约20%)显著低于NC组(约55%,P <0.0001 ),凋亡率(约13%)显著高于NC组(约4.5%,P <0.0001 )。补充Gln或过表达SLC38A2均能显著逆转上述现象,使迁移率恢复至约50%(P < 0.01 vs. KD组),凋亡率降至约5.5%(P <0.0001 vs. KD组)。结论 在低糖状态下,PCK2通过在转录水平上调控SLC38A2的表达,维持Gln摄取,从而促进NSCLC细胞的增殖、迁移和存活。PCK2-SLC38A2轴揭示了肿瘤代谢重编程的新机制,可能是一个潜在的NSCLC治疗靶点。 -
关键词:
- 非小细胞肺癌 /
- 磷酸烯醇式丙酮酸羧激酶2 /
- 溶质载体家族38成员2 /
- 谷氨酰胺转运 /
- 低糖环境
Abstract: To investigate the molecular mechanism by which phosphoenolpyruvate carboxykinase 2 (PCK2) regulates glutamine transport under low-glucose conditions and its impact on the malignant behaviors of non-small cell lung cancer (NSCLC) cells. Methods: Stable PCK2 knockdown (KD group) and negative control (NC group) cell lines (n = 3 for all experiments) were established in the human NSCLC A549 cell line.. The impact of PCK2 on the transcription and protein expression of solute carrier family 38 member 2 (SLC38A2) were assessed using PRM proteomics, Western blotting, and dual-luciferase reporter assays. Cell proliferation (MTT), migration (wound healing), and apoptosis (flow cytometry) were analyzed via MTT assay, scratch wound healing assay, and flow cytometry, respectively under low-glucose conditions (1000 mg/L). Functional rescue experiments were performed by establishing a Gln supplementation group (KD+Gln group) and an SLC38A2 overexpression group (KD+SLC38A2 group). Results: Upon PCK2 knockdown, SLC38A2 promoter activity decreased by approximately 60% (P <0.0001 ) and its protein expression was significantly reduced (P < 0.01). Under low-glucose conditions, cell proliferation was inhibited in the KD group. The 24-hour migration rate (≈20%) was significantly lower than that in the NC group (≈55%, P <0.0001 ), while the apoptosis rate (≈13%) was significantly higher (NC group ≈4.5%, P <0.0001 ). Both glutamine supplementation and SLC38A2 overexpression significantly reversed these phenomena, restoring migration rates to approximately 50% (P < 0.01 vs. KD) and reducing apoptosis to about 5.5% (P <0.0001 vs. KD). Conclusion: Under low-glucose stress, PCK2 maintains Gln uptake by regulating SLC38A2 expression at the transcriptional level, thereby promoting the proliferation, migration, and survival of NSCLC cells. The PCK2-SLC38A2 axis unveils a novel mechanism in tumor metabolic reprogramming and may represent a potential therapeutic target for NSCLC.-
Key words:
- Non-small cell lung cancer (NSCLC) /
- PCK2 /
- SLC38A2 /
- Glutamine transport /
- Low glucose
-
图 1 PCK2对肺癌细胞中Gln转运蛋白表达的影响 (n = 3,$\bar x \pm s $)
A:使用qPCR验证对照(NC)组和PCK2敲低(KD)组中PCK2 mRNA表达水平;B:使用Western blot验证NC组和KD组中的相对PCK2蛋白表达水平;C:使用PRM靶向蛋白质组学定量Gln转运蛋白在NC组和KD组中的表达;D:PRM靶向蛋白质组学中Gln转运蛋白在NC组和KD组中的定量结果(KD/NC);E:使用Western blot验证Gln转运蛋白在NC组和KD组中的蛋白水平,确认PRM结果;F:双荧光素酶实验验证PCK2对SLC38A2表达的影响。*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001。
Figure 1. Effect of PCK2 on the expression of glutamine transporter proteins in lung cancer cells (n = 3,$\bar x \pm s $)
图 3 PCK2调控及Gln供应恢复对低糖条件下肺癌细胞增殖、迁移和凋亡的影响 (n = 3,$\bar x \pm s $)
A:使用MTT法评估不同组别(NC、KD、KD+Gln)在5 d内的细胞增殖;B:使用创伤愈合实验评估细胞迁移率,在0 h、8 h和24 h进行观察。实验组:NC、KD、KD+Gln。左图为代表性图像,右图为定量结果;C:使用流式细胞术检测细胞凋亡率。实验组:NC、KD、KD+Gln。左图为代表性图,右图为定量结果。与NC组比较,**P < 0.01,****P < 0.0001,与KD组比较,##P < 0.01,####P < 0.0001。
Figure 3. Effects of PCK2 knockdown and glutamine supply restoration on proliferation,migration,and apoptosis of lung cancer cells under low-glucose conditions (n = 3,$\bar x \pm s $)
图 4 恢复Gln转运蛋白(SLC38A2)表达对低糖条件下PCK2敲低肺癌细胞增殖、迁移和凋亡的影响 (n = 3,$\bar x \pm s $)
A:使用qPCR验证NC、KD和KD+SLC38A2组的PCK2敲低效率;B:使用qPCR验证SLC38A2过表达效率;C:使用MTT法评估NC、KD和KD+SLC38A2组在5 d内的细胞增殖;D:使用创伤愈合实验评估细胞迁移率,在0 h、8 h和24 h时点进行观察。实验组:NC、KD、KD+SLC38A2。左图为代表性图像,右图为定量结果;E:使用流式细胞术检测细胞凋亡率。实验组:NC、KD、KD+SLC38A2。左图为代表性图,右图为定量结果。与NC组比较,**P < 0.0;***P < 0.001; ****P < 0.0001;与KD组比较,##P < 0.01; ###P < 0.001; ####P < 0.0001;ns为差异无统计学意义。
Figure 4. Effects of restoring glutamine transporter (SLC38A2) expression on proliferation,migration,and apoptosis of PCK2-knockdown lung cancer cells under low-glucose conditions (n = 3,$\bar x \pm s $)
表 1 qRT-PCR 引物表
Table 1. Primer sequences used for qRT-PCR
基因 引物 序列(5'→3') PCK2 Forward (F) GTGGGGGATGATATTGCTTG PCK2 Reverse (R) TGGTCTCAGCCACATTGGTA SLC38A2 Forward (F) AGTTGCCTTTGGTGATCCAG SLC38A2 Reverse (R) CAGGACACGGAACCTGAAAT GAPDH Forward (F) CAGCCTCAAGATCATCAGCA GAPDH Reverse (R) ATGATGTTCTGGAGAGCCCC 表 2 UALCAN分析SLC38A1和SLC38A2与NSCLC的相关性
Table 2. UALCAN analysis of the associations between SLC38A1/SLC38A2 expression and NSCLC
基因 亚型 UALCAN
P 值高表达组中位
生存期 (月)高表达组
95%CI (月)低表达组
中位生存期 (月)低表达组
95%CI (月)GEPIA2 Logrank
P 值SLC38A2 LUAD 0.0053 130 120~160 180 150~210 0.021* LUSC 0.92 180 170~210 190 170~210 0.47 SLC38A1 LUAD 0.19 130 120~150 170 150~200 0.015* LUSC 0.44 200 150~220 210 170~230 0.56 *P < 0.05。 -
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. [2] Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075. doi: 10.1016/S0140-6736(17)33326-3 [3] 胡婷婷, 鲁洪岭, 刘倩, 等. 非小细胞肺癌患者血清s Tim-3和SPINK1水平与三维适形放疗效果及预后的关系[J]. 贵州医科大学学报, 2024, 49(03): 417-422. doi: 10.19367/j.cnki.2096-8388.2024.03.014 [4] 刘玲玲, 王琴容, 苟铉婧, 等. hnRNPK对非小细胞肺癌增殖、迁移、侵袭的作用及其机制[J]. 贵州医科大学学报, 2025, 50(05): 649-658. doi: 10.19367/j.cnki.2096-8388.2025.05.003 [5] Pavlova N N, Zhu J, Thompson C B. The hallmarks of cancer metabolism: Still emerging[J]. Cell Metab, 2022, 34(3): 355-377. doi: 10.1016/j.cmet.2022.01.007 [6] Vanhove K, Derveaux E, Graulus G J, et al. Glutamine Addiction and Therapeutic Strategies in Lung Cancer[J]. Int J Mol Sci, 2019, 20(2): 252. doi: 10.3390/ijms20020252 [7] Lee J S, Kang J H, Lee S H, et al. Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC[J]. Cell Death Dis, 2016, 7(12): e2511. doi: 10.1038/cddis.2016.404 [8] Zhao X, Jin L, Liu Y, et al. Bioinformatic analysis of the role of solute carrier-glutamine transporters in breast cancer[J]. Ann Transl Med, 2022, 10(14): 777. doi: 10.21037/atm-22-2620 [9] Hossen M S, Islam M S U, Yasin M, et al. A review on the role of human solute carriers transporters in cancer[J]. Health Sci Rep, 2025, 8(1): e70343. doi: 10.1002/hsr2.70343 [10] Huang M S, Chang J H, Lin W C, et al. SLC38A2 overexpression induces a cancer-like metabolic profile and cooperates with SLC1A5 in pan-cancer prognosis[J]. Chem Asian J, 2020, 15(22): 3861-3872. [11] 李留峥, 徐雷升, 罗康虹, 等. SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响[J]. 昆明医科大学学报, 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004 [12] Gauthier-Coles G, Bröer A, McLeod M D, et al. Identification and characterization of a novel SNAT2 (SLC38A2) inhibitor reveals synergy with glucose transport inhibition in cancer cells[J]. Front Pharmacol, 2022, 13: 963066. doi: 10.3389/fphar.2022.963066 [13] Hyroššová P, Aragó M, Moreno-Felici J, et al. PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner[J]. Cancer Metab, 2021, 9(1): 1. doi: 10.1186/s40170-020-00236-3 [14] Anderson R, Pladna K M, Schramm N J, et al. Pyruvate dehydrogenase inhibition leads to decreased glycolysis, increased reliance on gluconeogenesis and alternative sources of acetyl-CoA in acute myeloid leukemia[J]. Cancers (Basel), 2023, 15(2): 484. doi: 10.3390/cancers15020484 [15] Zhang J, He W, Liu D, et al. Phosphoenolpyruvate carboxykinase 2-mediated metabolism promotes lung tumorigenesis by inhibiting mitochondrial-associated apoptotic cell death[J]. Front Pharmacol, 2024, 15: 1434988. doi: 10.3389/fphar.2024.1434988 [16] Yu S, Meng S, Xiang M, et al. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis[J]. Mol Metab, 2021, 53: 101257. doi: 10.1016/j.molmet.2021.101257 [17] Leithner K, Hrzenjak A, Trötzmüller M, et al. PCK2 activation mediates an adaptive response to glucose depletion in lung cancer[J]. Oncogene, 2015, 34(8): 1044-1050. doi: 10.1038/onc.2014.47 [18] Bluemel G, Planque M, Madreiter-Sokolowski C T, et al. PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells[J]. Free Radic Biol Med, 2021, 176: 34-45. doi: 10.1016/j.freeradbiomed.2021.09.007 [19] Wang B, Pei J, Xu S, et al. Correction: A glutamine tug-of-war between cancer and immune cells: Recent advances in unraveling the ongoing battle[J]. J Exp Clin Cancer Res, 2024, 43(1): 93. doi: 10.1186/s13046-024-03018-7 [20] Nan D, Yao W, Huang L, et al. Glutamine and cancer: Metabolism, immune microenvironment, and therapeutic targets[J]. Cell Commun Signal, 2025, 23(1): 45. [21] Montal E D, Dewi R, Bhalla K, et al. PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth[J]. Mol Cell, 2015, 60(4): 571-583. doi: 10.1016/j.molcel.2015.09.025 [22] Leithner K. PEPCK in cancer cell starvation[J]. Oncoscience, 2015, 2(10): 805-806. doi: 10.18632/oncoscience.252 [23] Feng H G, Wu C X, Zhong G C, et al. Integrative analysis reveals that SLC38A1 promotes hepatocellular carcinoma development via PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism[J]. J Cancer Res Clin Oncol, 2023, 149(17): 15879-15898. doi: 10.1007/s00432-023-05360-3 [24] Morotti M, Zois C E, El-Ansari R, et al. Increased exp、ression of glutamine transporter SNAT2/SLC38A2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer[J]. Br J Cancer, 2021, 124(2): 494-505. doi: 10.1038/s41416-020-01113-y [25] Sniegowski T, Rajasekaran D, Sennoune S R, et al. Amino acid transporter SLC38A5 is a tumor promoter and a novel therapeutic target for pancreatic cancer[J]. Sci Rep, 2023, 13(1): 16863. doi: 10.1038/s41598-023-43983-1 [26] Meijer T W H, Looijen-Salamon M G, Lok J, et al. Glucose and glutamine metabolism in relation to mutational status in NSCLC histological subtypes[J]. Thorac Cancer, 2019, 10(12): 2289-2299. doi: 10.1111/1759-7714.13226 [27] Bott A J, Maimouni S, Zong W X. The pleiotropic effects of glutamine metabolism in cancer[J]. Cancers (Basel), 2019, 11(6): 770. doi: 10.3390/cancers11060770 [28] 石国一, 刘玉玲, 王敏. VEGF、HIF-1α、COX-2在非小细胞肺癌中的表达及意义[J]. 河北医科大学学报, 2016, 37(03): 256-259. [29] 张洪珍, 杨圣俊, 臧玉芹, 等. 非小细胞肺癌中HIF-1α和Vimentin的表达及其临床意义[J]. 河北医科大学学报, 2018, 39(06): 628-631+635. doi: 10.3969/j.issn.1007-3205.2018.06.003 [30] 徐益多, 周彦琪, 王健, 等. S100A9-RAGE/TLR4信号轴调控非小细胞肺癌脑转移和内皮黏附的作用[J]. 昆明医科大学学报, 2025, 46(09): 23-36. [31] Rubio-Aliaga I, Wagner C A. Regulation and function of the SLC38A3/SNAT3 glutamine transporter[J]. Channels (Austin), 2016, 10(6): 440-452. doi: 10.1080/19336950.2016.1207024 -
下载: