留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饮料干预在代谢功能障碍相关脂肪性肝病中的研究进展

韦嘉雯 夏猛 陈玉君 杨永 张瑛 张江银 陈奎奎 邱祥龙

韦嘉雯, 夏猛, 陈玉君, 杨永, 张瑛, 张江银, 陈奎奎, 邱祥龙. 饮料干预在代谢功能障碍相关脂肪性肝病中的研究进展[J]. 昆明医科大学学报, 2025, 46(10): 145-155. doi: 10.12259/j.issn.2095-610X.S20251018
引用本文: 韦嘉雯, 夏猛, 陈玉君, 杨永, 张瑛, 张江银, 陈奎奎, 邱祥龙. 饮料干预在代谢功能障碍相关脂肪性肝病中的研究进展[J]. 昆明医科大学学报, 2025, 46(10): 145-155. doi: 10.12259/j.issn.2095-610X.S20251018
Jiawen WEI, Meng XIA, Yujun CHEN, Yong YANG, Ying ZHANG, Jiangyin ZHANG, Kuikui CHEN, Xianglong QIU. Beverage Interventions in Metabolic Dysfunction-associated Steatotic Liver Disease[J]. Journal of Kunming Medical University, 2025, 46(10): 145-155. doi: 10.12259/j.issn.2095-610X.S20251018
Citation: Jiawen WEI, Meng XIA, Yujun CHEN, Yong YANG, Ying ZHANG, Jiangyin ZHANG, Kuikui CHEN, Xianglong QIU. Beverage Interventions in Metabolic Dysfunction-associated Steatotic Liver Disease[J]. Journal of Kunming Medical University, 2025, 46(10): 145-155. doi: 10.12259/j.issn.2095-610X.S20251018

饮料干预在代谢功能障碍相关脂肪性肝病中的研究进展

doi: 10.12259/j.issn.2095-610X.S20251018
基金项目: 国家自然科学基金(82460921);广西中医药大学赛恩斯新医药学院自治区级大学生创新创业训练计划立项项目(S202513643090);广西中医药大学自治区级大学生创新训练计划立项项目(S202510600070);广西中医药大学校级科研项目(2024MS020);广西青年科学基金(2023GXNSFBA026276);广西中医药大学校级大学生创新训练计划立项项目(X202410600001)
详细信息
    作者简介:

    韦嘉雯(1997~),女,广西南宁人,在读硕士研究生,护师,主要从事老年护理学研究工作

    通讯作者:

    杨永,E-mail:yangyong102@126.com

    张瑛,E-mail:421293577@qq.com

  • 中图分类号: R575.5

Beverage Interventions in Metabolic Dysfunction-associated Steatotic Liver Disease

  • 摘要: 代谢功能障碍相关脂肪性肝病(MASLD)已成为全球最常见的慢性肝病,中国正面临MASLD负担快速上升的严峻挑战。饮料作为重要的可干预因素,已成为MASLD一级预防与生活方式管理的研究重点。对饮料消费趋势进行梳理,深入剖析含糖饮料、酒精饮品、咖啡与茶类对MASLD的作用机制与健康效应,归纳其潜在致病与保护路径,并探讨饮料干预与生活方式协调、功能饮品开发、心理行为机制调节及重点人群防控等综合策略,旨在为MASLD的本土化精准防控提供理论依据与实践指导。
  • 图  1  不同饮料在 MASLD 进展和预防中的作用机制示意图

    饮料可以通过调节多条通路来影响 MASLD进展。例如,肝脏的新生脂肪生成、线粒体β-氧化、炎症与肠道菌群失调。不同饮料成分对 MASLD不同阶段有不同的作用机制,其中含糖饮料和酒精饮料通过促进肝脂堆积、氧化应激与炎症放大,推动 MASLD进展;而咖啡与茶类则通过抗氧化、脂肪酸氧化及肠-肝轴调节,起到保护作用减缓 MASLD。

    Figure  1.  Mechanisms of action of different beverages in MASLD progression and prevention

  • [1] Israelsen M, Francque S, Tsochatzis E A, et al. Steatotic liver disease[J]. Lancet, 2024, 404(10464): 1761-1778. doi: 10.1016/S0140-6736(24)01811-7
    [2] Rinella M E, Lazarus J V, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. J Hepatol, 2023, 79(6): 1542-1556. doi: 10.1016/j.jhep.2023.06.003
    [3] Le M H, Le D M, Baez T C, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79(2): 287-295. doi: 10.1016/j.jhep.2023.03.040
    [4] Le M H, Yeo Y H, Zou B, et al. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach[J]. Clin Mol Hepatol, 2022, 28(4): 841-850. doi: 10.3350/cmh.2022.0239
    [5] Feng G, Targher G, Byrne C D, et al. Global burden of metabolic dysfunction-associated steatotic liver disease, 2010 to 2021[J]. JHEP Rep, 2025, 7(3): 101271. doi: 10.1016/j.jhepr.2024.101271
    [6] Paik J M, Mir S, Alqahtani S A, et al. Dietary risks for liver mortality in NAFLD: Global burden of disease data[J]. Hepatol Commun, 2022, 6(1): 90-100. doi: 10.1002/hep4.1707
    [7] Blecher E, Liber A C, Drope J M, et al. Global trends in the affordability of sugar-sweetened beverages, 1990-2016[J]. Prev Chronic Dis, 2017, 14: E37.
    [8] Vanderlee L, White C M, Kirkpatrick S I, et al. Nonalcoholic and alcoholic beverage intakes by adults across 5 upper-middle- and high-income countries[J]. J Nutr, 2021, 151(1): 140-151. doi: 10.1093/jn/nxaa324
    [9] Ferretti F, Mariani M. Sugar-sweetened beverage affordability and the prevalence of overweight and obesity in a cross section of countries[J]. Global Health, 2019, 15(1): 30. doi: 10.1186/s12992-019-0474-x
    [10] Dai J, Soto M J, Dunn C G, et al. Trends and patterns in sugar-sweetened beverage consumption among children and adults by race and/or ethnicity, 2003-2018[J]. Public Health Nutr, 2021, 24(9): 2405-2410. doi: 10.1017/S1368980021001580
    [11] Niu J, Shang M, Li X, et al. Health benefits, mechanisms of interaction with food components, and delivery of tea polyphenols: A review[J]. Crit Rev Food Sci Nutr, 2024, 64(33): 12487-12499. doi: 10.1080/10408398.2023.2253542
    [12] Zhang X, Goh G B, Chan W K, et al. Unhealthy lifestyle habits and physical inactivity among Asian patients with non-alcoholic fatty liver disease[J]. Liver Int, 2020, 40(11): 2719-2731. doi: 10.1111/liv.14638
    [13] 郭海军, 赵丽云, 许晓丽, 等. 2010-2012年中国18岁及以上成人含糖饮料消费状况[J]. 卫生研究, 2018, 47(1): 22-26.
    [14] 潘峰, 栾德春, 张彤薇, 等. 我国3岁及以上城市居民含糖饮料消费状况及其游离糖摄入评估[J]. 中国食品卫生杂志, 2022, 34(1): 126-130.
    [15] Qu D, Zhang X, Wang J, et al. New form of addiction: An emerging hazardous addiction problem of milk tea among youths[J]. J Affect Disord, 2023, 341: 26-34. doi: 10.1016/j.jad.2023.08.102
    [16] 许晓丽, 王惠君, 房红芸, 等. 2002—2015年中国成年人饮酒状况变迁[J]. 卫生研究, 2025, 54(2): 201-207.
    [17] Zhou Y, Hua J, Huang Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages[J]. Front Nutr, 2022, 9: 1022977.
    [18] Inci M K, Park S H, Helsley R N, et al. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD[J]. J Nutr Biochem, 2023, 114: 109224. doi: 10.1016/j.jnutbio.2022.109224
    [19] Liu W, Zhai D, Zhang T, et al. Meta-analysis of the association between major foods with added fructose and non-alcoholic fatty liver disease[J]. Food Funct, 2023, 14(12): 5551-5561. doi: 10.1039/D3FO00882G
    [20] Asgari-Taee F, Zerafati-Shoae N, Dehghani M, et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Nutr, 2019, 58(5): 1759-1769. doi: 10.1007/s00394-018-1711-4
    [21] Chen H, Wang J, Li Z, et al. Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: An updated systematic review and dose-response meta-analysis[J]. Int J Environ Res Public Health, 2019, 16(12): 2192. doi: 10.3390/ijerph16122192
    [22] Park W Y, Yiannakou I, Petersen J M, et al. Sugar-sweetened beverage, diet soda, and nonalcoholic fatty liver disease over 6 years: The Framingham heart study[J]. Clin Gastroenterol Hepatol, 2022, 20(11): 2524-2532. doi: 10.1016/j.cgh.2021.11.001
    [23] Lee D, Chiavaroli L, Ayoub-Charette S, et al. Important food sources of fructose-containing sugars and non-alcoholic fatty liver disease: A systematic review and meta-analysis of controlled trials[J]. Nutrients, 2022, 14(14): 2846. doi: 10.3390/nu14142846
    [24] Nikniaz L, Abbasalizad-Farhangi M, Vajdi M, et al. The association between sugars sweetened beverages (SSBs) and lipid profile among children and youth: A systematic review and dose-response meta-analysis of cross-sectional studies[J]. Pediatr Obes, 2021, 16(7): e12782. doi: 10.1111/ijpo.12782
    [25] Zhao L, Zhang X, Coday M, et al. Sugar-sweetened and artificially sweetened beverages and risk of liver cancer and chronic liver disease mortality[J]. JAMA, 2023, 330(6): 537-546. doi: 10.1001/jama.2023.12618
    [26] Beigrezaei S, Raeisi-Dehkordi H, Hernández V J, et al. Non-sugar-sweetened beverages and risk of chronic diseases: An umbrella review of meta-analyses of prospective cohort studies[J]. Nutr Rev, 2025, 83(4): 663-674. doi: 10.1093/nutrit/nuae135
    [27] Diaz C, Rezende L, Sabag A, et al. Artificially sweetened beverages and health outcomes: An umbrella review[J]. Adv Nutr, 2023, 14(4): 710-717. doi: 10.1016/j.advnut.2023.05.010
    [28] Sun Y, Yu B, Wang Y, et al. Associations of sugar-sweetened beverages, artificially sweetened beverages, and pure fruit juice with nonalcoholic fatty liver disease: Cross-sectional and longitudinal study[J]. Endocr Pract, 2023, 29(9): 735-742. doi: 10.1016/j.eprac.2023.06.002
    [29] Papadopoulos G, Legaki A I, Georgila K, et al. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity[J]. Metabolism, 2023, 144: 155552. doi: 10.1016/j.metabol.2023.155552
    [30] Jensen T, Abdelmalek M F, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 68(5): 1063-1075. doi: 10.1016/j.jhep.2018.01.019
    [31] Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J]. Nature, 2020, 579(7800): 586-591. doi: 10.1038/s41586-020-2101-7
    [32] DiNicolantonio J J, O'Keefe J H, Wilson W L. Sugar addiction: Is it real? A narrative review[J]. Br J Sports Med, 2018, 52(14): 910-913. doi: 10.1136/bjsports-2017-097971
    [33] Díaz L A, Arab J P, Louvet A, et al. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(12): 764-783. doi: 10.1038/s41575-023-00822-y
    [34] Glyn-Owen K, Böhning D, Parkes J, et al. The combined effect of alcohol and body mass index on risk of chronic liver disease: A systematic review and meta-analysis of cohort studies[J]. Liver Int, 2021, 41(6): 1216-1226. doi: 10.1111/liv.14754
    [35] Lee B P, Molina J, Kim S, et al. Association of alcohol and incremental cardiometabolic risk factors with liver disease: A national cross-sectional study[J]. Clin Gastroenterol Hepatol, 2025, Online ahead of print.
    [36] Moon J H, Jeong S, Jang H, et al. Metabolic dysfunction-associated steatotic liver disease increases the risk of incident cardiovascular disease: A nationwide cohort study[J]. EClinical Medicine, 2023, 65: 102292. doi: 10.1016/j.eclinm.2023.102292
    [37] Suzuki A, Angulo P, St S J, et al. Light to moderate alcohol consumption is associated with lower frequency of hypertransaminasemia[J]. Am J Gastroenterol, 2007, 102(9): 1912-1919. doi: 10.1111/j.1572-0241.2007.01274.x
    [38] Roerecke M, Vafaei A, Hasan O, et al. Alcohol consumption and risk of liver cirrhosis: A systematic review and meta-analysis[J]. Am J Gastroenterol, 2019, 114(10): 1574-1586. doi: 10.14309/ajg.0000000000000340
    [39] Zhu Y, Xu X, Fan Z, et al. Different minimal alcohol consumption in male and female individuals with metabolic dysfunction-associated fatty liver disease[J]. Liver Int, 2024, 44(3): 865-875. doi: 10.1111/liv.15849
    [40] Marcellin F, Beo V D, Carrieri P. Alcohol use patterns and liver outcomes: Is there really a difference between drinking beer and drinking wine?[J]. Clin Gastroenterol Hepatol, 2020, 18(7): 1650-1651. doi: 10.1016/j.cgh.2019.12.018
    [41] EASL-EASD-EASO Clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)[J]. J Hepatol, 2024, 81(3): 492-542.
    [42] Takeuchi M, Takino J I, Sakasai-Sakai A, et al. Toxic age (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD[J]. Nutrients, 2017, 9(6): 634. doi: 10.3390/nu9060634
    [43] Wei D, Tian X, Zhu L, et al. USP14 governs CYP2E1 to promote nonalcoholic fatty liver disease through deubiquitination and stabilization of HSP90AA1[J]. Cell Death Dis, 2023, 14(8): 566. doi: 10.1038/s41419-023-06091-6
    [44] Wolstenholme J T, Duong N K, Brocato E R, et al. Gut-liver-brain axis and alcohol use disorder: Treatment potential of fecal microbiota transplantation[J]. Alcohol Res, 2024, 44(1): 01. doi: 10.35946/arcr.v44.1.01
    [45] Flippo K H, Trammell S, Gillum M P, et al. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit[J]. Cell Metab, 2022, 34(2): 317-328. doi: 10.1016/j.cmet.2021.12.024
    [46] Zhang Y, Liu Z, Choudhury T, et al. Habitual coffee intake and risk for nonalcoholic fatty liver disease: A two-sample Mendelian randomization study[J]. Eur J Nutr, 2021, 60(4): 1761-1767. doi: 10.1007/s00394-020-02369-z
    [47] Yuan S, Chen J, Li X, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study[J]. Eur J Epidemiol, 2022, 37(7): 723-733. doi: 10.1007/s10654-022-00868-3
    [48] Kositamongkol C, Ngaohirunpat S, Samchusri S, et al. Beverage consumption in patients with metabolic syndrome and its association with non-alcoholic fatty liver disease: A cross-sectional study[J]. Front Nutr, 2024, 11: 1257969. doi: 10.3389/fnut.2024.1257969
    [49] Ebadi M, Ip S, Bhanji R A, et al. Effect of coffee consumption on non-alcoholic fatty liver disease incidence, prevalence and risk of significant liver fibrosis: Systematic review with meta-analysis of observational studies[J]. Nutrients, 2021, 13(9): 3042. doi: 10.3390/nu13093042
    [50] Mansour A, Mohajeri-Tehrani M R, Karimi S, et al. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebo-controlled, clinical trial[J]. EXCLI J, 2020, 19: 241-250.
    [51] Mo C, Duan X, Pu J, et al. Coffee consumption as a double-edged sword for serum lipid profile: Findings from NHANES 2005-2020[J]. Front Nutr, 2025, 12: 1606188. doi: 10.3389/fnut.2025.1606188
    [52] Dranoff J A. Coffee as chemoprotectant in fatty liver disease: Caffeine-dependent and caffeine-independent effects[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 324(6): G419-G421. doi: 10.1152/ajpgi.00026.2023
    [53] Li Y, Zhang P, Deng Y, et al. Association of sugar-sweetened, artificially sweetened, and unsweetened coffee consumption with chronic liver disease and liver-related events: A large prospective cohort study[J]. J Nutr, 2025, 155(3): 975-984. doi: 10.1016/j.tjnut.2025.01.009
    [54] Mullins V A, Bresette W, Johnstone L, et al. Genomics in personalized nutrition: Can you "eat for your genes"?[J]. Nutrients, 2020, 12(10): 3118. doi: 10.3390/nu12103118
    [55] Ungvari Z, Kunutsor S K. Coffee consumption and cardiometabolic health: A comprehensive review of the evidence[J]. Geroscience, 2024, 46(6): 6473-6510. doi: 10.1007/s11357-024-01262-5
    [56] Huang Y W, Wang L T, Zhang M, et al. Caffeine can alleviate non-alcoholic fatty liver disease by augmenting LDLR expression via targeting EGFR[J]. Food Funct, 2023, 14(7): 3269-3278. doi: 10.1039/D2FO02701A
    [57] Xin X, Chen C, Xu X, et al. Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9[J]. Redox Biol, 2025, 80: 103499. doi: 10.1016/j.redox.2025.103499
    [58] Xue H, Wei M, Ji L. Chlorogenic acids: A pharmacological systematic review on their hepatoprotective effects[J]. Phytomedicine, 2023, 118: 154961. doi: 10.1016/j.phymed.2023.154961
    [59] Arroyave-Ospina J C, Martínez M, Buist-Homan M, et al. Coffee compounds protection against lipotoxicity is associated with lipid droplet formation and antioxidant response in primary rat hepatocytes[J]. Antioxidants (Basel), 2025, 14(2): 175. doi: 10.3390/antiox14020175
    [60] Zhang J, Ouyang H, Gu X, et al. Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1[J]. Free Radic Biol Med, 2024, 224: 352-365. doi: 10.1016/j.freeradbiomed.2024.08.038
    [61] Di Mauro S, Salomone F, Scamporrino A, et al. Coffee restores expression of lncRNAs involved in steatosis and fibrosis in a mouse model of NAFLD[J]. Nutrients, 2021, 13(9): 2952. doi: 10.3390/nu13092952
    [62] Handu D, Stote K, Piemonte T. Evaluating bioactive-substance-based interventions for adults with MASLD: Results from a systematic scoping review[J]. Nutrients, 2025, 17(3): 453. doi: 10.3390/nu17030453
    [63] Zhang Y, Yin R, Lang J, et al. Epigallocatechin-3-gallate ameliorates hepatic damages by relieve FGF21 resistance and promotion of FGF21-AMPK pathway in mice fed a high fat diet[J]. Diabetol Metab Syndr, 2022, 14(1): 53. doi: 10.1186/s13098-022-00823-y
    [64] Mohsenzadeh M S, Razavi B M, Imenshahidi M, et al. Potential role of green tea extract and epigallocatechin gallate in preventing bisphenol A-induced metabolic disorders in rats: Biochemical and molecular evidence[J]. Phytomedicine, 2021, 92: 153754. doi: 10.1016/j.phymed.2021.153754
    [65] Ding S B, Chu X L, Jin Y X, et al. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis[J]. Front Pharmacol, 2023, 14: 1148814. doi: 10.3389/fphar.2023.1148814
    [66] Yang M, Yan R, Sha R, et al. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4[J]. Clin Nutr, 2024, 43(8): 1769-1780. doi: 10.1016/j.clnu.2024.06.018
    [67] Zuo G, Chen M, Zuo Y, et al. Tea Polyphenol epigallocatechin gallate protects against nonalcoholic fatty liver disease and associated endotoxemia in rats via modulating gut microbiota dysbiosis and alleviating intestinal barrier dysfunction and related inflammation[J]. J Agric Food Chem, 2024, 72: 9067-9086.
    [68] Naito Y, Ushiroda C, Mizushima K, et al. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids[J]. J Clin Biochem Nutr, 2020, 67(1): 2-9. doi: 10.3164/jcbn.20-39
    [69] Xu J, Wei Y, Huang Y, et al. Regulatory effects and molecular mechanisms of tea and its active compounds on nonalcoholic fatty liver disease[J]. J Agric Food Chem, 2023, 71: 3101-3124.
    [70] Yuan E, Duan X, Xiang L, et al. Aged oolong tea reduces high-fat diet-induced fat accumulation and dyslipidemia by regulating the AMPK/ACC signaling pathway[J]. Nutrients, 2018, 10(2): 187. doi: 10.3390/nu10020187
    [71] Weerawatanakorn M, He S, Chang C H, et al. High gamma-aminobutyric acid (GABA) oolong tea alleviates high-fat diet-induced metabolic disorders in mice[J]. ACS Omega, 2023, 8(37): 33997-34007. doi: 10.1021/acsomega.3c04874
    [72] Chen Y, Huang Y, Gan Q, et al. Characterization of tea polysaccharides from tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways[J]. J Food Sci, 2024, 89(12): 10064-10078. doi: 10.1111/1750-3841.17575
    [73] Tung Y C, Liang Z R, Yang M J, et al. Oolong tea extract alleviates weight gain in high-fat diet-induced obese rats by regulating lipid metabolism and modulating gut microbiota[J]. Food Funct, 2022, 13(5): 2846-2856. doi: 10.1039/D1FO03356E
    [74] Zhou C, Zhang W, Lin H, et al. Effect of theaflavin-3, 3'-digallate on leptin-deficient induced nonalcoholic fatty liver disease might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota[J]. Front Pharmacol, 2022, 13: 925264. doi: 10.3389/fphar.2022.925264
    [75] Shen Y, Xiao X, Wu K, et al. Effects and molecular mechanisms of Ninghong black tea extract in nonalcoholic fatty liver disease of rats[J]. J Food Sci, 2020, 85(3): 800-807. doi: 10.1111/1750-3841.14846
    [76] Liu S, Li Q, Chen P, et al. Association between dietary tea consumption and non-alcoholic fatty liver disease: A study based on mendelian randomisation and national health and nutrition examination survey (2005-2018) association between tea and non-alcoholic fatty liver disease[J]. Br J Nutr, 2024, 1-11.
    [77] Li H Y, Huang S Y, Zhou D D, et al. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis[J]. J Adv Res, 2023, 52: 59-72. doi: 10.1016/j.jare.2023.01.008
    [78] Wu Z, Yu W, Ni W, et al. Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification[J]. Phytomedicine, 2023, 110: 154633. doi: 10.1016/j.phymed.2022.154633
    [79] Tang W, Yuan M, Li Z, et al. Polyphenol-rich Liupao tea extract prevents high-fat diet-induced MAFLD by modulating the gut microbiota[J]. Nutrients, 2022, 14(22): 4930. doi: 10.3390/nu14224930
    [80] Yang S, Wei Z, Luo J, et al. Integrated bioinformatics and multiomics reveal Liupao tea extract alleviating NAFLD via regulating hepatic lipid metabolism and gut microbiota[J]. Phytomedicine, 2024, 132: 155834. doi: 10.1016/j.phymed.2024.155834
    [81] Li N, Zhou X, Wang J, et al. White tea alleviates non-alcoholic fatty liver disease by regulating energy expenditure and lipid metabolism[J]. Gene, 2022, 833: 146553. doi: 10.1016/j.gene.2022.146553
    [82] Liang J, Gu L, Liu X, et al. L-theanine prevents progression of nonalcoholic hepatic steatosis by regulating hepatocyte lipid metabolic pathways via the CaMKKβ-AMPK signaling pathway[J]. Nutr Metab (Lond), 2022, 19(1): 29. doi: 10.1186/s12986-022-00664-6
    [83] Huang Y, Chen Z, Chen B, et al. Dietary sugar consumption and health: Umbrella review[J]. BMJ, 2023, 381: e071609.
    [84] Andreyeva T, Marple K, Marinello S, et al. Outcomes following taxation of sugar-sweetened beverages: A systematic review and meta-analysis[J]. JAMA Netw Open, 2022, 5(6): e2215276. doi: 10.1001/jamanetworkopen.2022.15276
    [85] Sadafi S, Azizi A, Rezaeian S, et al. Association between healthy beverage index and nonalcoholic fatty liver disease in the Ravansar noncommunicable disease cohort study[J]. Sci Rep, 2024, 14(1): 3622. doi: 10.1038/s41598-024-54288-2
    [86] Park M, Sharma A, Baek H, et al. Stevia and stevioside attenuate liver steatosis through PPARα-Mediated lipophagy in db/db Mice hepatocytes[J]. Antioxidants (Basel), 2022, 11(12): 2496. doi: 10.3390/antiox11122496
    [87] Jin M, Wei Y, Yu H, et al. Erythritol improves nonalcoholic fatty liver disease by activating Nrf2 antioxidant capacity[J]. J Agric Food Chem, 2021, 69(44): 13080-13092. doi: 10.1021/acs.jafc.1c05213
    [88] Nian F, Wu L, Xia Q, et al. Akkermansia muciniphila and bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota[J]. J Clin Transl Hepatol, 2023, 11(4): 763-776.
    [89] Zhang X, Lau H C, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options[J]. Pharmacol Rev, 2025, 77(2): 100018. doi: 10.1016/j.pharmr.2024.100018
    [90] Castro A, Gili M, Visser M, et al. Soft Drinks and symptoms of depression and anxiety in overweight subjects: A longitudinal analysis of an european cohort[J]. Nutrients, 2023, 15(18): 3865. doi: 10.3390/nu15183865
    [91] Tarantino G, Cataldi M, Citro V. Could alcohol abuse and dependence on junk foods inducing obesity and/or illicit drug use represent danger to liver in young people with altered psychological/relational spheres or emotional problems?[J]. Int J Mol Sci, 2022, 23(18): 10406. doi: 10.3390/ijms231810406
    [92] Zhuang X, Liu Y, Gittelsohn J, et al. Sugar-sweetened beverages consumption and associated factors among northeastern Chinese children[J]. Nutrients, 2021, 13(7): 2233. doi: 10.3390/nu13072233
    [93] Zhang Y, Bu Y, Zhao R, et al. Metabolic-associated fatty liver disease and pregnancy complications: New challenges and clinical perspectives[J]. Ther Adv Endocrinol Metab, 2024, 15: 1839323666.
    [94] Gebremichael B, Begum M, Bianco-Miotto T, et al. Preconception and pregnancy artificially sweetened beverage consumption and its association with adverse pregnancy outcomes: Findings from the Australian longitudinal study on women's health[J]. Diabetes Res Clin Pract, 2025, 227: 112422. doi: 10.1016/j.diabres.2025.112422
  • [1] 苏蓉, 林玲, 赵渊, 杨爱玲, 张明国, 张浒, 马国玉.  慢性心力衰竭合并NAFLD的临床特征及影响因素, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250809
    [2] 熊佳, 曾加, 周小仙, 徐鑫, 汪艳蛟, 吴志霜, 殷建忠, 米飞.  益生菌辅助治疗代谢功能障碍相关脂肪性肝病的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250720
    [3] 陈杭, 崔琦, 黄敏杉, 刘建军, 马岚青.  miRNA在非酒精性脂肪性肝病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240101
    [4] 李媛媛, 宋亚贤, 徐玉善, 曾晓甫, 袁惠, 徐兆, 江艳.  肠道菌群代谢物TMAO与非酒精性脂肪性肝病的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240210
    [5] 李春, 周琼, 梅聪, 黄洁杰, 王毅鹏, 周松兰, 郑倩, 唐哲.  双歧杆菌三联活菌对小鼠非酒精性脂肪肝模型中肠道微生物组的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231022
    [6] 李露, 田云粉.  肠道菌群与儿童非酒精性脂肪性肝病的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230708
    [7] 张学敏, 田云粉.  胆汁酸代谢异常在非酒精性脂肪性肝病发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231125
    [8] 杨永锐, 王丽媛, 李海雯, 赵智蓉, 普瑞, 吴贵帅, 李树德.  灯盏乙素抑制NOX的表达改善非酒精性脂肪性肝病肝脏纤维化的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220721
    [9] 李生浩, 丁洁, 王晴晴, 刘思奇, 华丽娟, 段劲宇, 柏保利, 杜安瑞, 常国楫, 李俊义.  慢性乙型病毒性肝炎合并NAFLD患者发生中重度肝损伤的影响因素, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210712
    [10] 徐永芳, 吴娜, 胡月新, 赵永美, 郑绍鼎, 危玲, 郑思佳, 刘建军.  GW7647对大鼠非酒精性脂肪性肝病(NAFLD)的治疗作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210804
    [11] 王礴, 夏咸松, 李进涛, 段小花.  细胞色素P450 2E1在甘草甜素治疗非酒精性脂肪肝病中的作用, 昆明医科大学学报.
    [12] 张丹, 吕俊衍, 邓溢, 周波, 罗粟风, 王金香, 文玉, 应昀晏, 文代艳, 马岚青.  三种不同饮食干预建立非酒精性脂肪肝模型, 昆明医科大学学报.
    [13] 薛平燕, 江艳, 徐玉善, 袁惠, 李璇, 宋亚贤, 刘华.  肠道菌群结构在非酒精性脂肪性肝病患者中的改变, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201120
    [14] 朱为梅, 华鹏, 罗宇超, 杨红玲, 李亚山, 赵红宇.  低铅染毒抑制非酒精性脂肪性肝病大鼠脂肪酸分解加重其肝脏损伤, 昆明医科大学学报.
    [15] 田薇.  利拉鲁肽调节脂肪酸的β-氧化改善非酒精性脂肪肝病大鼠症状, 昆明医科大学学报.
    [16] 刘荣.  二甲双胍治疗2型糖尿病大鼠非酒精性脂肪肝疗效, 昆明医科大学学报.
    [17] 江艳.  非酒精性脂肪性肝患者的代谢紊乱分析, 昆明医科大学学报.
    [18] 张媛.  2型糖尿病合并非酒精性脂肪肝病患者Chemerin与氧化应激变化及临床意义, 昆明医科大学学报.
    [19] 沈丽新.  非酒精脂肪肝病患者ApoB/ApoA1比值与胰岛素抵抗的相关性研究, 昆明医科大学学报.
    [20] 和海玉.  非酒精性脂肪肝大鼠胃窦Cajal间质细胞的研究, 昆明医科大学学报.
  • 加载中
图(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  99
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-05
  • 网络出版日期:  2025-10-11
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回