| [1] | Israelsen M, Francque S, Tsochatzis E A, et al. Steatotic liver disease[J]. Lancet, 2024, 404(10464): 1761-1778. doi: 10.1016/S0140-6736(24)01811-7 | 
		
				| [2] | Rinella M E, Lazarus J V, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. J Hepatol, 2023, 79(6): 1542-1556. doi: 10.1016/j.jhep.2023.06.003 | 
		
				| [3] | Le M H, Le D M, Baez T C, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79(2): 287-295. doi: 10.1016/j.jhep.2023.03.040 | 
		
				| [4] | Le M H, Yeo Y H, Zou B, et al. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach[J]. Clin Mol Hepatol, 2022, 28(4): 841-850. doi: 10.3350/cmh.2022.0239 | 
		
				| [5] | Feng G, Targher G, Byrne C D, et al. Global burden of metabolic dysfunction-associated steatotic liver disease, 2010 to 2021[J]. JHEP Rep, 2025, 7(3): 101271. doi: 10.1016/j.jhepr.2024.101271 | 
		
				| [6] | Paik J M, Mir S, Alqahtani S A, et al. Dietary risks for liver mortality in NAFLD: Global burden of disease data[J]. Hepatol Commun, 2022, 6(1): 90-100. doi: 10.1002/hep4.1707 | 
		
				| [7] | Blecher E, Liber A C, Drope J M, et al. Global trends in the affordability of sugar-sweetened beverages, 1990-2016[J]. Prev Chronic Dis, 2017, 14: E37. | 
		
				| [8] | Vanderlee L, White C M, Kirkpatrick S I, et al. Nonalcoholic and alcoholic beverage intakes by adults across 5 upper-middle- and high-income countries[J]. J Nutr, 2021, 151(1): 140-151. doi: 10.1093/jn/nxaa324 | 
		
				| [9] | Ferretti F, Mariani M. Sugar-sweetened beverage affordability and the prevalence of overweight and obesity in a cross section of countries[J]. Global Health, 2019, 15(1): 30. doi: 10.1186/s12992-019-0474-x | 
		
				| [10] | Dai J, Soto M J, Dunn C G, et al. Trends and patterns in sugar-sweetened beverage consumption among children and adults by race and/or ethnicity, 2003-2018[J]. Public Health Nutr, 2021, 24(9): 2405-2410. doi: 10.1017/S1368980021001580 | 
		
				| [11] | Niu J, Shang M, Li X, et al. Health benefits, mechanisms of interaction with food components, and delivery of tea polyphenols: A review[J]. Crit Rev Food Sci Nutr, 2024, 64(33): 12487-12499. doi: 10.1080/10408398.2023.2253542 | 
		
				| [12] | Zhang X, Goh G B, Chan W K, et al. Unhealthy lifestyle habits and physical inactivity among Asian patients with non-alcoholic fatty liver disease[J]. Liver Int, 2020, 40(11): 2719-2731. doi: 10.1111/liv.14638 | 
		
				| [13] | 郭海军, 赵丽云, 许晓丽, 等. 2010-2012年中国18岁及以上成人含糖饮料消费状况[J]. 卫生研究, 2018, 47(1): 22-26. | 
		
				| [14] | 潘峰, 栾德春, 张彤薇, 等. 我国3岁及以上城市居民含糖饮料消费状况及其游离糖摄入评估[J]. 中国食品卫生杂志, 2022, 34(1): 126-130. | 
		
				| [15] | Qu D, Zhang X, Wang J, et al. New form of addiction: An emerging hazardous addiction problem of milk tea among youths[J]. J Affect Disord, 2023, 341: 26-34. doi: 10.1016/j.jad.2023.08.102 | 
		
				| [16] | 许晓丽, 王惠君, 房红芸, 等. 2002—2015年中国成年人饮酒状况变迁[J]. 卫生研究, 2025, 54(2): 201-207. | 
		
				| [17] | Zhou Y, Hua J, Huang Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages[J]. Front Nutr, 2022, 9: 1022977. | 
		
				| [18] | Inci M K, Park S H, Helsley R N, et al. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD[J]. J Nutr Biochem, 2023, 114: 109224. doi: 10.1016/j.jnutbio.2022.109224 | 
		
				| [19] | Liu W, Zhai D, Zhang T, et al. Meta-analysis of the association between major foods with added fructose and non-alcoholic fatty liver disease[J]. Food Funct, 2023, 14(12): 5551-5561. doi: 10.1039/D3FO00882G | 
		
				| [20] | Asgari-Taee F, Zerafati-Shoae N, Dehghani M, et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Nutr, 2019, 58(5): 1759-1769. doi: 10.1007/s00394-018-1711-4 | 
		
				| [21] | Chen H, Wang J, Li Z, et al. Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: An updated systematic review and dose-response meta-analysis[J]. Int J Environ Res Public Health, 2019, 16(12): 2192. doi: 10.3390/ijerph16122192 | 
		
				| [22] | Park W Y, Yiannakou I, Petersen J M, et al. Sugar-sweetened beverage, diet soda, and nonalcoholic fatty liver disease over 6 years: The Framingham heart study[J]. Clin Gastroenterol Hepatol, 2022, 20(11): 2524-2532. doi: 10.1016/j.cgh.2021.11.001 | 
		
				| [23] | Lee D, Chiavaroli L, Ayoub-Charette S, et al. Important food sources of fructose-containing sugars and non-alcoholic fatty liver disease: A systematic review and meta-analysis of controlled trials[J]. Nutrients, 2022, 14(14): 2846. doi: 10.3390/nu14142846 | 
		
				| [24] | Nikniaz L, Abbasalizad-Farhangi M, Vajdi M, et al. The association between sugars sweetened beverages (SSBs) and lipid profile among children and youth: A systematic review and dose-response meta-analysis of cross-sectional studies[J]. Pediatr Obes, 2021, 16(7): e12782. doi: 10.1111/ijpo.12782 | 
		
				| [25] | Zhao L, Zhang X, Coday M, et al. Sugar-sweetened and artificially sweetened beverages and risk of liver cancer and chronic liver disease mortality[J]. JAMA, 2023, 330(6): 537-546. doi: 10.1001/jama.2023.12618 | 
		
				| [26] | Beigrezaei S, Raeisi-Dehkordi H, Hernández V J, et al. Non-sugar-sweetened beverages and risk of chronic diseases: An umbrella review of meta-analyses of prospective cohort studies[J]. Nutr Rev, 2025, 83(4): 663-674. doi: 10.1093/nutrit/nuae135 | 
		
				| [27] | Diaz C, Rezende L, Sabag A, et al. Artificially sweetened beverages and health outcomes: An umbrella review[J]. Adv Nutr, 2023, 14(4): 710-717. doi: 10.1016/j.advnut.2023.05.010 | 
		
				| [28] | Sun Y, Yu B, Wang Y, et al. Associations of sugar-sweetened beverages, artificially sweetened beverages, and pure fruit juice with nonalcoholic fatty liver disease: Cross-sectional and longitudinal study[J]. Endocr Pract, 2023, 29(9): 735-742. doi: 10.1016/j.eprac.2023.06.002 | 
		
				| [29] | Papadopoulos G, Legaki A I, Georgila K, et al. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity[J]. Metabolism, 2023, 144: 155552. doi: 10.1016/j.metabol.2023.155552 | 
		
				| [30] | Jensen T, Abdelmalek M F, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 68(5): 1063-1075. doi: 10.1016/j.jhep.2018.01.019 | 
		
				| [31] | Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J]. Nature, 2020, 579(7800): 586-591. doi: 10.1038/s41586-020-2101-7 | 
		
				| [32] | DiNicolantonio J J, O'Keefe J H, Wilson W L. Sugar addiction: Is it real? A narrative review[J]. Br J Sports Med, 2018, 52(14): 910-913. doi: 10.1136/bjsports-2017-097971 | 
		
				| [33] | Díaz L A, Arab J P, Louvet A, et al. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(12): 764-783. doi: 10.1038/s41575-023-00822-y | 
		
				| [34] | Glyn-Owen K, Böhning D, Parkes J, et al. The combined effect of alcohol and body mass index on risk of chronic liver disease: A systematic review and meta-analysis of cohort studies[J]. Liver Int, 2021, 41(6): 1216-1226. doi: 10.1111/liv.14754 | 
		
				| [35] | Lee B P, Molina J, Kim S, et al. Association of alcohol and incremental cardiometabolic risk factors with liver disease: A national cross-sectional study[J]. Clin Gastroenterol Hepatol, 2025, Online ahead of print. | 
		
				| [36] | Moon J H, Jeong S, Jang H, et al. Metabolic dysfunction-associated steatotic liver disease increases the risk of incident cardiovascular disease: A nationwide cohort study[J]. EClinical Medicine, 2023, 65: 102292. doi: 10.1016/j.eclinm.2023.102292 | 
		
				| [37] | Suzuki A, Angulo P, St S J, et al. Light to moderate alcohol consumption is associated with lower frequency of hypertransaminasemia[J]. Am J Gastroenterol, 2007, 102(9): 1912-1919. doi: 10.1111/j.1572-0241.2007.01274.x | 
		
				| [38] | Roerecke M, Vafaei A, Hasan O, et al. Alcohol consumption and risk of liver cirrhosis: A systematic review and meta-analysis[J]. Am J Gastroenterol, 2019, 114(10): 1574-1586. doi: 10.14309/ajg.0000000000000340 | 
		
				| [39] | Zhu Y, Xu X, Fan Z, et al. Different minimal alcohol consumption in male and female individuals with metabolic dysfunction-associated fatty liver disease[J]. Liver Int, 2024, 44(3): 865-875. doi: 10.1111/liv.15849 | 
		
				| [40] | Marcellin F, Beo V D, Carrieri P. Alcohol use patterns and liver outcomes: Is there really a difference between drinking beer and drinking wine?[J]. Clin Gastroenterol Hepatol, 2020, 18(7): 1650-1651. doi: 10.1016/j.cgh.2019.12.018 | 
		
				| [41] | EASL-EASD-EASO Clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)[J]. J Hepatol, 2024, 81(3): 492-542. | 
		
				| [42] | Takeuchi M, Takino J I, Sakasai-Sakai A, et al. Toxic age (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD[J]. Nutrients, 2017, 9(6): 634. doi: 10.3390/nu9060634 | 
		
				| [43] | Wei D, Tian X, Zhu L, et al. USP14 governs CYP2E1 to promote nonalcoholic fatty liver disease through deubiquitination and stabilization of HSP90AA1[J]. Cell Death Dis, 2023, 14(8): 566. doi: 10.1038/s41419-023-06091-6 | 
		
				| [44] | Wolstenholme J T, Duong N K, Brocato E R, et al. Gut-liver-brain axis and alcohol use disorder: Treatment potential of fecal microbiota transplantation[J]. Alcohol Res, 2024, 44(1): 01. doi: 10.35946/arcr.v44.1.01 | 
		
				| [45] | Flippo K H, Trammell S, Gillum M P, et al. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit[J]. Cell Metab, 2022, 34(2): 317-328. doi: 10.1016/j.cmet.2021.12.024 | 
		
				| [46] | Zhang Y, Liu Z, Choudhury T, et al. Habitual coffee intake and risk for nonalcoholic fatty liver disease: A two-sample Mendelian randomization study[J]. Eur J Nutr, 2021, 60(4): 1761-1767. doi: 10.1007/s00394-020-02369-z | 
		
				| [47] | Yuan S, Chen J, Li X, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study[J]. Eur J Epidemiol, 2022, 37(7): 723-733. doi: 10.1007/s10654-022-00868-3 | 
		
				| [48] | Kositamongkol C, Ngaohirunpat S, Samchusri S, et al. Beverage consumption in patients with metabolic syndrome and its association with non-alcoholic fatty liver disease: A cross-sectional study[J]. Front Nutr, 2024, 11: 1257969. doi: 10.3389/fnut.2024.1257969 | 
		
				| [49] | Ebadi M, Ip S, Bhanji R A, et al. Effect of coffee consumption on non-alcoholic fatty liver disease incidence, prevalence and risk of significant liver fibrosis: Systematic review with meta-analysis of observational studies[J]. Nutrients, 2021, 13(9): 3042. doi: 10.3390/nu13093042 | 
		
				| [50] | Mansour A, Mohajeri-Tehrani M R, Karimi S, et al. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebo-controlled, clinical trial[J]. EXCLI J, 2020, 19: 241-250. | 
		
				| [51] | Mo C, Duan X, Pu J, et al. Coffee consumption as a double-edged sword for serum lipid profile: Findings from NHANES 2005-2020[J]. Front Nutr, 2025, 12: 1606188. doi: 10.3389/fnut.2025.1606188 | 
		
				| [52] | Dranoff J A. Coffee as chemoprotectant in fatty liver disease: Caffeine-dependent and caffeine-independent effects[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 324(6): G419-G421. doi: 10.1152/ajpgi.00026.2023 | 
		
				| [53] | Li Y, Zhang P, Deng Y, et al. Association of sugar-sweetened, artificially sweetened, and unsweetened coffee consumption with chronic liver disease and liver-related events: A large prospective cohort study[J]. J Nutr, 2025, 155(3): 975-984. doi: 10.1016/j.tjnut.2025.01.009 | 
		
				| [54] | Mullins V A, Bresette W, Johnstone L, et al. Genomics in personalized nutrition: Can you "eat for your genes"?[J]. Nutrients, 2020, 12(10): 3118. doi: 10.3390/nu12103118 | 
		
				| [55] | Ungvari Z, Kunutsor S K. Coffee consumption and cardiometabolic health: A comprehensive review of the evidence[J]. Geroscience, 2024, 46(6): 6473-6510. doi: 10.1007/s11357-024-01262-5 | 
		
				| [56] | Huang Y W, Wang L T, Zhang M, et al. Caffeine can alleviate non-alcoholic fatty liver disease by augmenting LDLR expression via targeting EGFR[J]. Food Funct, 2023, 14(7): 3269-3278. doi: 10.1039/D2FO02701A | 
		
				| [57] | Xin X, Chen C, Xu X, et al. Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9[J]. Redox Biol, 2025, 80: 103499. doi: 10.1016/j.redox.2025.103499 | 
		
				| [58] | Xue H, Wei M, Ji L. Chlorogenic acids: A pharmacological systematic review on their hepatoprotective effects[J]. Phytomedicine, 2023, 118: 154961. doi: 10.1016/j.phymed.2023.154961 | 
		
				| [59] | Arroyave-Ospina J C, Martínez M, Buist-Homan M, et al. Coffee compounds protection against lipotoxicity is associated with lipid droplet formation and antioxidant response in primary rat hepatocytes[J]. Antioxidants (Basel), 2025, 14(2): 175. doi: 10.3390/antiox14020175 | 
		
				| [60] | Zhang J, Ouyang H, Gu X, et al. Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1[J]. Free Radic Biol Med, 2024, 224: 352-365. doi: 10.1016/j.freeradbiomed.2024.08.038 | 
		
				| [61] | Di Mauro S, Salomone F, Scamporrino A, et al. Coffee restores expression of lncRNAs involved in steatosis and fibrosis in a mouse model of NAFLD[J]. Nutrients, 2021, 13(9): 2952. doi: 10.3390/nu13092952 | 
		
				| [62] | Handu D, Stote K, Piemonte T. Evaluating bioactive-substance-based interventions for adults with MASLD: Results from a systematic scoping review[J]. Nutrients, 2025, 17(3): 453. doi: 10.3390/nu17030453 | 
		
				| [63] | Zhang Y, Yin R, Lang J, et al. Epigallocatechin-3-gallate ameliorates hepatic damages by relieve FGF21 resistance and promotion of FGF21-AMPK pathway in mice fed a high fat diet[J]. Diabetol Metab Syndr, 2022, 14(1): 53. doi: 10.1186/s13098-022-00823-y | 
		
				| [64] | Mohsenzadeh M S, Razavi B M, Imenshahidi M, et al. Potential role of green tea extract and epigallocatechin gallate in preventing bisphenol A-induced metabolic disorders in rats: Biochemical and molecular evidence[J]. Phytomedicine, 2021, 92: 153754. doi: 10.1016/j.phymed.2021.153754 | 
		
				| [65] | Ding S B, Chu X L, Jin Y X, et al. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis[J]. Front Pharmacol, 2023, 14: 1148814. doi: 10.3389/fphar.2023.1148814 | 
		
				| [66] | Yang M, Yan R, Sha R, et al. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4[J]. Clin Nutr, 2024, 43(8): 1769-1780. doi: 10.1016/j.clnu.2024.06.018 | 
		
				| [67] | Zuo G, Chen M, Zuo Y, et al. Tea Polyphenol epigallocatechin gallate protects against nonalcoholic fatty liver disease and associated endotoxemia in rats via modulating gut microbiota dysbiosis and alleviating intestinal barrier dysfunction and related inflammation[J]. J Agric Food Chem, 2024, 72: 9067-9086. | 
		
				| [68] | Naito Y, Ushiroda C, Mizushima K, et al. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids[J]. J Clin Biochem Nutr, 2020, 67(1): 2-9. doi: 10.3164/jcbn.20-39 | 
		
				| [69] | Xu J, Wei Y, Huang Y, et al. Regulatory effects and molecular mechanisms of tea and its active compounds on nonalcoholic fatty liver disease[J]. J Agric Food Chem, 2023, 71: 3101-3124. | 
		
				| [70] | Yuan E, Duan X, Xiang L, et al. Aged oolong tea reduces high-fat diet-induced fat accumulation and dyslipidemia by regulating the AMPK/ACC signaling pathway[J]. Nutrients, 2018, 10(2): 187. doi: 10.3390/nu10020187 | 
		
				| [71] | Weerawatanakorn M, He S, Chang C H, et al. High gamma-aminobutyric acid (GABA) oolong tea alleviates high-fat diet-induced metabolic disorders in mice[J]. ACS Omega, 2023, 8(37): 33997-34007. doi: 10.1021/acsomega.3c04874 | 
		
				| [72] | Chen Y, Huang Y, Gan Q, et al. Characterization of tea polysaccharides from tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways[J]. J Food Sci, 2024, 89(12): 10064-10078. doi: 10.1111/1750-3841.17575 | 
		
				| [73] | Tung Y C, Liang Z R, Yang M J, et al. Oolong tea extract alleviates weight gain in high-fat diet-induced obese rats by regulating lipid metabolism and modulating gut microbiota[J]. Food Funct, 2022, 13(5): 2846-2856. doi: 10.1039/D1FO03356E | 
		
				| [74] | Zhou C, Zhang W, Lin H, et al. Effect of theaflavin-3, 3'-digallate on leptin-deficient induced nonalcoholic fatty liver disease might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota[J]. Front Pharmacol, 2022, 13: 925264. doi: 10.3389/fphar.2022.925264 | 
		
				| [75] | Shen Y, Xiao X, Wu K, et al. Effects and molecular mechanisms of Ninghong black tea extract in nonalcoholic fatty liver disease of rats[J]. J Food Sci, 2020, 85(3): 800-807. doi: 10.1111/1750-3841.14846 | 
		
				| [76] | Liu S, Li Q, Chen P, et al. Association between dietary tea consumption and non-alcoholic fatty liver disease: A study based on mendelian randomisation and national health and nutrition examination survey (2005-2018) association between tea and non-alcoholic fatty liver disease[J]. Br J Nutr, 2024, 1-11. | 
		
				| [77] | Li H Y, Huang S Y, Zhou D D, et al. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis[J]. J Adv Res, 2023, 52: 59-72. doi: 10.1016/j.jare.2023.01.008 | 
		
				| [78] | Wu Z, Yu W, Ni W, et al. Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification[J]. Phytomedicine, 2023, 110: 154633. doi: 10.1016/j.phymed.2022.154633 | 
		
				| [79] | Tang W, Yuan M, Li Z, et al. Polyphenol-rich Liupao tea extract prevents high-fat diet-induced MAFLD by modulating the gut microbiota[J]. Nutrients, 2022, 14(22): 4930. doi: 10.3390/nu14224930 | 
		
				| [80] | Yang S, Wei Z, Luo J, et al. Integrated bioinformatics and multiomics reveal Liupao tea extract alleviating NAFLD via regulating hepatic lipid metabolism and gut microbiota[J]. Phytomedicine, 2024, 132: 155834. doi: 10.1016/j.phymed.2024.155834 | 
		
				| [81] | Li N, Zhou X, Wang J, et al. White tea alleviates non-alcoholic fatty liver disease by regulating energy expenditure and lipid metabolism[J]. Gene, 2022, 833: 146553. doi: 10.1016/j.gene.2022.146553 | 
		
				| [82] | Liang J, Gu L, Liu X, et al. L-theanine prevents progression of nonalcoholic hepatic steatosis by regulating hepatocyte lipid metabolic pathways via the CaMKKβ-AMPK signaling pathway[J]. Nutr Metab (Lond), 2022, 19(1): 29. doi: 10.1186/s12986-022-00664-6 | 
		
				| [83] | Huang Y, Chen Z, Chen B, et al. Dietary sugar consumption and health: Umbrella review[J]. BMJ, 2023, 381: e071609. | 
		
				| [84] | Andreyeva T, Marple K, Marinello S, et al. Outcomes following taxation of sugar-sweetened beverages: A systematic review and meta-analysis[J]. JAMA Netw Open, 2022, 5(6): e2215276. doi: 10.1001/jamanetworkopen.2022.15276 | 
		
				| [85] | Sadafi S, Azizi A, Rezaeian S, et al. Association between healthy beverage index and nonalcoholic fatty liver disease in the Ravansar noncommunicable disease cohort study[J]. Sci Rep, 2024, 14(1): 3622. doi: 10.1038/s41598-024-54288-2 | 
		
				| [86] | Park M, Sharma A, Baek H, et al. Stevia and stevioside attenuate liver steatosis through PPARα-Mediated lipophagy in db/db Mice hepatocytes[J]. Antioxidants (Basel), 2022, 11(12): 2496. doi: 10.3390/antiox11122496 | 
		
				| [87] | Jin M, Wei Y, Yu H, et al. Erythritol improves nonalcoholic fatty liver disease by activating Nrf2 antioxidant capacity[J]. J Agric Food Chem, 2021, 69(44): 13080-13092. doi: 10.1021/acs.jafc.1c05213 | 
		
				| [88] | Nian F, Wu L, Xia Q, et al. Akkermansia muciniphila and bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota[J]. J Clin Transl Hepatol, 2023, 11(4): 763-776. | 
		
				| [89] | Zhang X, Lau H C, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options[J]. Pharmacol Rev, 2025, 77(2): 100018. doi: 10.1016/j.pharmr.2024.100018 | 
		
				| [90] | Castro A, Gili M, Visser M, et al. Soft Drinks and symptoms of depression and anxiety in overweight subjects: A longitudinal analysis of an european cohort[J]. Nutrients, 2023, 15(18): 3865. doi: 10.3390/nu15183865 | 
		
				| [91] | Tarantino G, Cataldi M, Citro V. Could alcohol abuse and dependence on junk foods inducing obesity and/or illicit drug use represent danger to liver in young people with altered psychological/relational spheres or emotional problems?[J]. Int J Mol Sci, 2022, 23(18): 10406. doi: 10.3390/ijms231810406 | 
		
				| [92] | Zhuang X, Liu Y, Gittelsohn J, et al. Sugar-sweetened beverages consumption and associated factors among northeastern Chinese children[J]. Nutrients, 2021, 13(7): 2233. doi: 10.3390/nu13072233 | 
		
				| [93] | Zhang Y, Bu Y, Zhao R, et al. Metabolic-associated fatty liver disease and pregnancy complications: New challenges and clinical perspectives[J]. Ther Adv Endocrinol Metab, 2024, 15: 1839323666. | 
		
				| [94] | Gebremichael B, Begum M, Bianco-Miotto T, et al. Preconception and pregnancy artificially sweetened beverage consumption and its association with adverse pregnancy outcomes: Findings from the Australian longitudinal study on women's health[J]. Diabetes Res Clin Pract, 2025, 227: 112422. doi: 10.1016/j.diabres.2025.112422 |