留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响

李留峥 徐雷升 罗康虹 张明停 王燕 高学昌 俸家伟 龚国茶

李留峥, 徐雷升, 罗康虹, 张明停, 王燕, 高学昌, 俸家伟, 龚国茶. SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响[J]. 昆明医科大学学报, 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004
引用本文: 李留峥, 徐雷升, 罗康虹, 张明停, 王燕, 高学昌, 俸家伟, 龚国茶. SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响[J]. 昆明医科大学学报, 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004
Liuzheng LI, Leisheng XU, Kanghong LUO, Mingting ZHANG, Yan WANG, Xuechang GAO, Jiawei FENG, Guocha GONG. Effect of SLC7A11 Gene on Progression of Hepatocellular Carcinoma by Regualating Iron Death Pathway[J]. Journal of Kunming Medical University, 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004
Citation: Liuzheng LI, Leisheng XU, Kanghong LUO, Mingting ZHANG, Yan WANG, Xuechang GAO, Jiawei FENG, Guocha GONG. Effect of SLC7A11 Gene on Progression of Hepatocellular Carcinoma by Regualating Iron Death Pathway[J]. Journal of Kunming Medical University, 2025, 46(10): 32-43. doi: 10.12259/j.issn.2095-610X.S20251004

SLC7A11基因通过调控铁死亡通路对肝细胞癌进展的影响

doi: 10.12259/j.issn.2095-610X.S20251004
基金项目: 云南省科技人才与平台计划项目(202405AF140042);云南省教育厅科学研究基金(2025J0801)
详细信息
    作者简介:

    李留峥(1971~),男,云南云县人,医学硕士,主任医师,主要从事肝胆外科临床及科研工作

    通讯作者:

    俸家伟,E-mail:1770268284@qq.com

    龚国茶,E-mail:15126580514@qq.com

  • 中图分类号: R735.7

Effect of SLC7A11 Gene on Progression of Hepatocellular Carcinoma by Regualating Iron Death Pathway

  • 摘要:   目的  探讨SLC7A11基因通过铁死亡通路调控肝细胞癌发生发展的机制,并评估其作为潜在治疗靶点的应用价值。  方法  基于TCGA和ICGC数据库筛选肝癌中差异表达的铁死亡相关基因。采用qRT-PCR检测32例临床肝癌样本中癌组织与癌旁组织中TERT、MIOX、MYCN、NOX4和SLC7A11的mRNA表达。进一步通过qRT-PCR、Western blot和IHC分析SLC7A11及其下游分子SLC3A2、GSS和GPX4的表达水平及组织分布。构建SLC7A11干扰型稳定转染的HCCLM3细胞株,并用于建立裸鼠皮下移植瘤模型,以评估其对肿瘤生长的影响。小鼠共分为两组(每组6只):HCCLM3 + sh-NC组和HCCLM3 + sh-SLC7A11组。采用ELISA检测小鼠血清中IL-6、IL-1β和TNF-α的含量,通过HE染色观察肿瘤组织的病理变化,并结合多种方法验证上述关键基因的表达。  结果  生物信息学分析显示SLC7A11在肝癌组织中高表达(P < 0.05),与患者不良预后显著相关。临床样本验证中,SLC7A11、SLC3A2、GSS和GPX4在癌组织中表达明显高于对照组(P均< 0.05)。敲减SLC7A11显著抑制肿瘤体积和湿重(P < 0.05),HE染色显示sh-SLC7A11组血管密度降低。ELISA结果显示sh-SLC7A11组血清中IL-1β、IL-6和TNF-α水平升高(P均< 0.05)。qRT-PCR、Western blot及IHC均显示SLC7A11、SLC3A2、GSS和GPX4在肿瘤组织中表达水平显著下调(P均< 0.05)。  结论  SLC7A11通过调控GSH-GPX4轴抑制铁死亡,促进肝癌细胞生长。靶向抑制SLC7A11可诱导肿瘤细胞铁死亡,抑制肿瘤进展,提示其有望成为肝癌治疗的重要靶点。
  • 图  1  生信分析发现SLC7A11在肝癌组织中显著高表达

    A~B:TCGA-LIHC(A)与 LIHC-US(B)差异表达基因火山图;红色表示上调基因,蓝色为下调,灰色为无显著差异,黄色为上下调中 logFC 绝对值排名前 5 的基因;C~D:TCGA-LIHC(C)与 LIHC-US(D)差异基因热图;红色为高表达,蓝色为低表达;顶部为样本分组(青色:Normal,粉红色:Tumor);左侧为基因分组(红色:上调,蓝色:下调);E:TCGA-LIHC 与 LIHC-US 差异基因与铁死亡相关基因交集韦恩图;F:12个关键基因的 Kaplan-Meier 生存分析曲线;G:GEPIA2 分析肝癌与正常组织中差异表达基因;H:QPCR 检测 TERT、MIOX、MYCN、NOX4、SLC7A11 在临床样本中的表达(GAPDH 为内参);ns:P > 0.05;*P < 0.05。

    Figure  1.  Bioinformatics analysis reveals significant overexpression of SLC7A11 in hepatocellular carcinoma tissue

    图  2  临床样本中验证SLC7A11及其通路因子的表达情况

    A:QPCR检测临床样本中SLC3A2、GSS、GPX4的表达水平,以GAPDH作为内参;B:WB检测SLC7A11、SLC3A2、GSS、GPX4蛋白的表达水平,以β-Actin作为内参,患者姓名采用P开头的编号代替;C:IHC检测SLC7A11、SLC3A2、GSS、GPX4蛋白的表达水平(400×);染色结果呈现:细胞核染色为蓝色,检测目的蛋白的阳性染色为棕黄色;统计图样本n = 32;ns:P > 0.05;*P < 0.05;**P < 0.01;****P < 0.0001。

    Figure  2.  Verification of SLC7A11 and its pathway factors expression in clinical samples

    图  3  SLC7A11干扰载体构建

    A:质粒图谱;B:QPCR筛选最佳干扰序列;C:慢病毒包装;D:稳转株构建;E:RT-qPCR验证SLC7A11的表达水平,以GAPDH作为内参;F:WB验证SLC7A11的表达水平,以β-Actin作为内参;统计图样本中,n = 6;ns:P > 0.05;*P < 0.05;**P < 0.01;****P < 0.0001。

    Figure  3.  Construction of SLC7A11 interference carrier

    图  4  动物水平验证SLC7A11及其通路因子对肝癌发生发展的影响

    A:肿瘤大体图;B:体积数据;C:肿瘤重量数据;D:HE染色;E:ELISA检测血清IL-6、IL-1β、TNF-α;F:IHC检测SLC7A11、SLC3A2、GSS、GPX4蛋白的表达水平(400×),染色结果呈现:细胞核染色为蓝色,目的蛋白的阳性染色为棕黄色;G:WB检测SLC7A11、SLC3A2、GSS、GPX4蛋白的表达水平,以β-Actin作为内参;H:RT-qPCR检测动物样本中SLC3A2、GSS、GPX4的表达水平,以GAPDH作为内参;n = 6;ns:P > 0.05;*P < 0.05;**P < 0.01。

    Figure  4.  Animal level validation of the effects of SLC7A11 and its pathway factors on the occurrence and development of liver cancer

    表  1  临床统计 ($\bar x \pm s $)

    Table  1.   Clinical statistics ($\bar x \pm s $)

    临床特征 n SLC7A11 在肿瘤组织中的表达 t P
    性别 19 8.510±2.250 4.175 0.001*
    13 15.830±7.190
    年龄(岁) ≥50 18 12.910±6.730 1.569 0.130
    ﹤50 14 9.650±4.560
    TNM分期 0-II 13 7.800±1.600 3.285 0.003*
    III-IV 19 14.010±6.650
    肝内转移 18 13.190±7.210 1.864 0.069
    14 9.290±3.050
    术前AFP(ng/mL) ≥25 18 12.180±6.090 1.806 0.081
    ﹤25 4 6.570±1.990
    肿瘤大小(cm) ≥5 8 14.090±6.700 1.825 0.201
    ﹤5 24 10.750±5.750
      *P < 0.05。
    下载: 导出CSV
  • [1] Siegel R L , Miller K D , Wagle N S , et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
    [2] Filho A M , Laversanne M , Ferlay J , et al. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide[J]. International Journal of Cancer, 2025, 156(7): 1336-1346.
    [3] 徐若翔, 曾智明, 朱广志, 等. 肝细胞癌AASLD(2023年版)、NCCN(2024年版)、ASCO(2024年版)指南和中国《原发性肝癌诊疗指南(2024年版)》更新解读[J]. 中国普外基础与临床杂志, 2025, 32(2): 184-191.
    [4] Lin W, Wang C, Liu G, et al. SLC7A11/xCT in cancer: Biological functions and therapeutic implications[J]. Am J Cancer Res, 2020, 10(10): 3106-3126.
    [5] 刘晓轩, 张驰, 黄思琪, 等. SLC7A11的调控机制及肿瘤治疗应用研究进展[J]. 中国肿瘤, 2023, 32(11): 878-885. doi: 10.11735/j.issn.1004-0242.2023.11.A010
    [6] Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun(Lond), 2018, 38(1): 12.
    [7] Liu M R, Zhu W T, Pei D S. System Xc-: A key regulatory target of ferroptosis in cancer[J]. Invest New Drugs, 2021, 39(4): 1123-1131. doi: 10.1007/s10637-021-01070-0
    [8] Gong D, Chen M, Wang Y, et al. Role of ferroptosis on tumor progression and immunotherapy[J]. Cell Death Discov, 2022, 8(1): 427. doi: 10.1038/s41420-022-01218-8
    [9] Mukhopadhyay S, Biancur D E, Parker S J, et al. Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11[J]. Proc Natl Acad Sci USA, 2021, 118(6): e2021475118. doi: 10.1073/pnas.2021475118
    [10] Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis[J]. Nat Cell Biol, 2023, 25(3): 404-414.
    [11] 吴伟刚, 田圆, 刘琢冰, 等. SLC7A11基因表达沉默的肝癌细胞株的构建及筛选[J]. 现代肿瘤医学, 2015, 23(2): 149-152. doi: 10.3969/j.issn.1672-4992.2015.02.02
    [12] Liu Y, Ouyang L, Mao C, et al. PCDHB14 promotes ferroptosis and is a novel tumor suppressor in hepatocellular carcinoma[J]. Oncogene, 2022, 41(27): 3570-3583. doi: 10.1038/s41388-022-02370-2
    [13] Yang J , Hu B , Zhang G , et al. Protocadherin 17 weakens the lenvatinib resistance of liver cancer through inducing ferroptosis[J]. Experimental Cell Research, 2025, 447(1): 114495.
    [14] Zhang B , Bao W , Zhang S , et al. LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination[J]. Cell Death Dis, 2022, 13(8): 734.
    [15] Xie Y , Kang R , Klionsky D J , et al. GPX4 in cell death, autophagy, and disease[J]. Autophagy, 2023, 19(10): 2621-2638.
    [16] Reem A , Jos V D V , Nicholas H , et al. Glutaredoxin attenuates glutathione levels via deglutathionylation of Otub1 and subsequent destabilization of system xC [J]. Science Advances, 2023, 9(37): eadi5192.
    [17] Bi F , Qiu Y , Wu Z , et al. METTL9-SLC7A11 axis promotes hepatocellular carcinoma progression through ferroptosis inhibition[J]. Cell Death Discovery, 2023, 9(1): 428.
    [18] Zhang Y , Yao R , Li M , et al. CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis[J]. Molecular Cancer, 2025, 24(1): 32.
    [19] Gnanapradeepan K , Basu S , Barnoud T , et al. The p53 tumor suppressor in the control of metabolism and ferroptosis[J]. Frontiers in Endocrinology, 2018, 9: 124.
    [20] Parkin D M , Bray M F , Ferlay M J , et al. Global cancer statistics, 2002[J]. Ca A Cancer Journal for Clinicians, 2005, 55(2): 74-108.
    [21] Tang W, Chen Z, Zhang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects[J]. Signal Transduct Target Ther, 2020, 5(1): 87. doi: 10.1038/s41392-020-0187-x
    [22] Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7): 381-396. doi: 10.1038/s41568-022-00459-0
    [23] Li J, Cao F, Yin H L, et al. Ferroptosis: Past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. doi: 10.1038/s41419-020-2298-2
    [24] Xu S, He Y, Lin L, et al. The emerging role of ferroptosis in intestinal disease[J]. Cell Death Dis, 2021, 12(4): 289. doi: 10.1038/s41419-021-03559-1
    [25] Jiang X, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
    [26] Lindblad K E , Donne R , Liebling I , et al. NOTCH1 drives sexually dimorphic immune responses in hepatocellular carcinoma[J]. Cancer Discov, 2025, 15(3): 495-510.
    [27] 曾丹宁. 表达下调的FPN1通过调节SLC7A11和GPX4介导的铁死亡来抑制肝细胞癌的生长[D]. 广州: 广州医科大学, 2021.
    [28] Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. Mol Cancer, 2022, 21(1): 109. doi: 10.1186/s12943-022-01575-z
    [29] Zhao L, Zhou X, Xie F, et al. Ferroptosis in cancer and cancer immunotherapy[J]. Cancer Commun (Lond), 2022, 42(2): 88-116. doi: 10.1002/cac2.12250
    [30] Chen X, Kang R, Kroemer G, et al. Broadening horizons: The role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. doi: 10.1038/s41571-020-00462-0
    [31] Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance[J]. Mol Cancer, 2022, 21(1): 47. doi: 10.1186/s12943-022-01530-y
    [32] Sun X D, Qin Y, Liu L L, et al. Sodium butyrate inhibits liver cancer cell proliferation by inducing ferroptosis[J]. Journal of Nutrition, 2023, 45(2): 157-162.
    [33] Ao L, Wang D, Shu S H. The study on the inhibitory effect of propofol on the proliferation and migration of liver cancer cells and its mechanism of iron death pathway[J]. Journal of Molecular Diagnosis and Treatment, 2022, 14(12): 2036-2039+2043.
    [34] Zheng Y, Huang C, Lu L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib[J]. J Hematol Oncol, 2021, 14(1): 16. doi: 10.1186/s13045-020-01029-3
    [35] Zhang W, Jiang B P, Liu Y X, et al. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4[J]. Free Radic Biol Med, 2022, 180: 75-84. doi: 10.1016/j.freeradbiomed.2022.01.009
    [36] Li D B, Wang Y H, Dong C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1[J]. Oncogene, 2023, 42(2): 83-98. doi: 10.1038/s41388-022-02537-x
    [37] Wang X B, Chen Y Q, Wang X D, et al. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11[J]. Cancer Res, 2021, 81(20): 5217-5229. doi: 10.1158/0008-5472.CAN-21-0567
  • [1] 沈晓霞, 赵晓东, 宋永健.  SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250507
    [2] 秦瑞峰, 薛佳栋, 张佳, 刘帆, 张绍辉, 尹立阳, 袁增江.  SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251005
    [3] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250407
    [4] 张春瑜, 罗健, 周琦.  miR-147a调控铁死亡影响宫颈癌细胞的侵袭转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20251006
    [5] 吴琼, 李娜, 徐瑜涓.  基于Citespace肝癌症状群文献可视化分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241109
    [6] 魏红艳, 王远珍, 常丽仙, 木唤, 刘春云, 刘立.  原发性肝癌合并腹水患者发生SBP的风险预测分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240320
    [7] 热则耶·麦麦提祖农, 李秀娟, 刘玲, 李卉.  铁死亡抑制因子KIF20A对食管癌细胞生物学行为及铁死亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240207
    [8] 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕.  铁死亡在心肌病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240327
    [9] 储召松, 王欣, 和梦鑫, 许秀峰, 王娜, 沈宗霖.  抑郁症自杀相关基因的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230301
    [10] 王东, 高必波, 孙会英, 冷登辉, 冉小平, 林文.  miR-216b-5p通过靶向NCOA3促进胶质母细胞瘤细胞铁死亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230805
    [11] 陆小华, 袁洪新.  BTLA、CTLA-4基因多态性与肝癌TACE联合靶向治疗疗效及预后相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230927
    [12] 郭玺, 汤晓青, 王洁, 万焱, 徐斌, 罗煜.  早期介入姑息治疗对肝炎相关性肝癌患者疼痛、焦虑影响分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220813
    [13] 朱容松, 魏晓平, 戴斌, 范海军, 谈义政, 范雪融, 田大广.  精准肝切除联合TACE对肝癌免疫监视的影响, 昆明医科大学学报.
    [14] 刘幸.  Toll样受体在肝癌中作用的研究进展, 昆明医科大学学报.
    [15] 喻箴.  Let-7在正常乳腺组织和乳腺癌组织中的表达, 昆明医科大学学报.
    [16] 郭涛.  超声造影对肝癌栓塞化疗术后早期微循环灌注28例观察, 昆明医科大学学报.
    [17] 安新焕.  ACE和eNOS 2个基因多态性并存与糖尿病肾病的相关性, 昆明医科大学学报.
    [18] 孙健玮.  PTEN基因与前列腺癌, 昆明医科大学学报.
    [19] 刘梅.  2007年至2008年昆明地区腹泻患儿轮状病毒非结构蛋白基因特征的分析, 昆明医科大学学报.
    [20] 袁惠.  超声引导下射频消融微创治疗肝癌的临床评价, 昆明医科大学学报.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  58
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回