留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DRD1在神经系统疾病和功能中的研究进展

李瑾瑜 冯良升 高扬 李钰 吴帮旭 邹英鹰

李瑾瑜, 冯良升, 高扬, 李钰, 吴帮旭, 邹英鹰. DRD1在神经系统疾病和功能中的研究进展[J]. 昆明医科大学学报.
引用本文: 李瑾瑜, 冯良升, 高扬, 李钰, 吴帮旭, 邹英鹰. DRD1在神经系统疾病和功能中的研究进展[J]. 昆明医科大学学报.
Jinyu LI, Liangsheng FENG, yang GAO, yu LI, Bangxu WU, Yingying ZOU. Research Progress of DRD1 in Neurological Disorders and Functions[J]. Journal of Kunming Medical University.
Citation: Jinyu LI, Liangsheng FENG, yang GAO, yu LI, Bangxu WU, Yingying ZOU. Research Progress of DRD1 in Neurological Disorders and Functions[J]. Journal of Kunming Medical University.

DRD1在神经系统疾病和功能中的研究进展

基金项目: 国家自然科学基金资助项目(32060184);校级大学生创新创业训练基金资助项目(2023CXD267)
详细信息
    作者简介:

    李瑾瑜(2004~),女,云南昆明人,在读本科生

    通讯作者:

    邹英鹰,E-mail:zouyingyingzyy@126.com

  • 中图分类号: R741.02

Research Progress of DRD1 in Neurological Disorders and Functions

  • 摘要: 多巴胺D1受体(dopamine D1 receptor ,DRD1)是目前已知神经系统表达最广泛的多巴胺受体亚型。DRD1能通过多种信号通路发挥运动、情感、认知、学习记忆以及神经内分泌等功能。这些功能可能与帕金森综合征、精神分裂症、抑郁症等精神疾病以及免疫有关。而DRD1的表达变化通常提示了神经系统功能的改变。因此DRD1可以作为神经系统疾病和功能变化的潜在指标和神经系统疾病治疗的潜在靶点。综述了DRD1在神经系统中的分布和功能,重点强调了DRD1与神经系统相关的信号通路。
  • [1] Sioka C,Fotopoulos A,Kyritsis A P. Recent advances in PET imaging forevaluation of Parkinson's disease[J]. Eur J Nucl Med Mol Imaging,2010,37(8):1594-1603. doi: 10.1007/s00259-009-1357-9
    [2] Wei X,Ma T,Cheng Y,et al. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system[J]. Addict Biol,2018,23(2):569-584. doi: 10.1111/adb.12512
    [3] Zang X,Cheng Z Y,Sun Y,et al. The ameliorative effects and underlying mechanisms of dopamine D1-like receptor agonist SKF38393 on Aβ1-42-induced cognitive impairment[J]. Prog Neuropsychopharmacol Biol Psychiatry,2018,2(81):250-261.
    [4] Kim M,Custodio R J,Lee H J,et al. Per2 Expression regulates the spatial working memory of mice through DRD1-PKA-CREB signaling[J]. Mol Neurobiol,2022,59(7):4292-4303. doi: 10.1007/s12035-022-02845-z
    [5] C Missale 1, SR Nash, SW Robinson, et al. Dopamine receptors: From structure to function[J]. Physiol Rev,1998,78(1):189-225.
    [6] Trzaskowski B,Latek D,Yuan S,et al. Action of molecular switches in GPCRs-theoretical and experimental studies[J]. Curr Med Chem,2012,19(8):1090-1109.
    [7] 曹国祥. 多巴胺受体显像剂的研究概况[J]. 国外医学(放射医学核医学分册),1999,23(2):65-67
    [8] Wen X S,Chen X M,Rong F,et al. The regulation of SKF38393 on the dopamine and D1 receptor expression in hippocampus during chronic REM sleep restriction[J]. CNS Neurosci Ther,2013,19(9):730-733. doi: 10.1111/cns.12140
    [9] 乔晋萍,乔洪文,武仙英,等. 多巴胺神经系统显像分子探针研究[J]. 生命的化学,2014,34(2):154-165.
    [10] Gouveri E,Katotomichelakis M,Gouveris H,et al. Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease?[J]Angiology,2014,65(10): 869-876.
    [11] 李瑞,范运龙,刘海鹰,等. 多巴胺D1受体在小鼠大脑皮层的空间分布研究[J]. 神经解剖学杂志,2019,35(3):229-235.
    [12] De Bundel D,Femen í a T,DuPont C M,et al. Hippocampal and prefrontal dopamine D1/5 receptor involvement in the memory-enhancing effect of reboxetine[J]. Int J Neuropsychopharmacol,2013,16(9):2041-51. doi: 10.1017/S1461145713000370
    [13] Liu A,Ding S. Anti-inflammatory Effects of Dopamine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells via inhibiting NLRP3 inflammasome activation[J]. Ann Clin Lab Sci,2019,49(3):353-360.
    [14] Seamans J K,Yang C R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex[J]. Prog Neurobiol,2004,74(1):1-57. doi: 10.1016/j.pneurobio.2004.05.006
    [15] 张国炳, 陈峻严, 孙文栋,等. 多巴胺D1受体基因(-48A/G)多态性与额叶挫裂伤后认知障碍相关性[J]. 中华实验外科杂志,2016,33(4):993-996.
    [16] J. M. Beaulieu,S. Espinoza,R. R. Gainetdinov. Dopamine receptors - IUPHAR Review 13[J]. Britisch Journal of Pharmacology,2015,172(1): 1-23.
    [17] 王功伍,蔡景霞. 海马-前额叶神经回路与工作记忆[J]. 动物学研究,2010,31(1):50-56.
    [18] Tsang J,Fullard J F,Giakoumaki S G,et al. The relationship between dopamine receptor D1 and cognitive performance. NPJ Schizophr,2015,4(1): 14002.
    [19] El-Ghundi M,Fletcher P J,Drago J,et al. Spatiallearning deficit in dopamine D(1) receptor knockout mice[J]. Eur J Pharmacol,1999,383(2):95-106. doi: 10.1016/S0014-2999(99)00573-7
    [20] Tractenberg S G,Orso R,Creutzberg K C,et al. Vulnerable and resilient cognitive performance related to early life stress: The potential mediating role of dopaminergic receptors in the medial prefrontal cortex of adult mice[J]. Int J Dev Neurosci,2020,80(1):13-27. doi: 10.1002/jdn.10004
    [21] 胡一文,王高华,顾剑. 精神分裂症患者多巴胺D1受体基因-48A/G多态性与认知功能的关系[J]. 中国神经精神疾病杂志,2006,32(6):523-526. doi: 10.3969/j.issn.1002-0152.2006.06.009
    [22] 李凡,舒斯云,包新民. 多巴胺受体的结构和功能[J]. 中国神经科学杂志,2003,19(6):405-410.
    [23] Smith, Y Raju, DV Pare, et al. The thalamostriatal system: A highly specific network of the basal ganglia circuitry[J]. Trends Neurosci,2004,27(9):520-527.
    [24] Darmopil S, Martín AB, De Diego IR, et al. Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation[J]. Biol Psychiatry,,2009,66(6):603-613.
    [25] Reid K M,Steel D,Nair S,et al. Loss-of-function variants in DRD1 in infantile Parkinsonism-dystonia[J]. Cells,2023,12(7):1046.
    [26] Toma C,Herv á s A,Balmaña N,et al. Neurotransmitter systems and neurotrophic factors in autism: Association study of 37 genes suggests involvement of DDC[J]. World J Biol Psychiatry,2013,14(7):516-527. doi: 10.3109/15622975.2011.602719
    [27] Cartier E,Hamilton P J,Belovich A N,et al. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors[J]. EBioMedicine,2015,2(2):135-146. doi: 10.1016/j.ebiom.2015.01.007
    [28] Corrales E,Navarro A,Cuenca P,et al. Candidate gene study reveals DRD1 and DRD2 as putative interacting risk factors for youth depression[J]. Psychiatry Res,2016,30;244:71-77.
    [29] Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia[J]. Life Science,1999,65(22):2269-2287.
    [30] Odum A L. Delay discounting: I'm a k,you're a k[J]. J Exp Anal Behav,2011,96(3):427-439. doi: 10.1901/jeab.2011.96-423
    [31] Bickel W K,Jarmolowicz D P,Mueller E T,et al. Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: Emerging evidence[J]. Pharmacol Ther,2012,134(3):287-297. doi: 10.1016/j.pharmthera.2012.02.004
    [32] Moses T E H,Burmeister M,Greenwald M K. Heroin delay discounting and impulsivity: Modulation by DRD1 genetic variation[J]. Addict Biol,2020,25(3):e12777. doi: 10.1111/adb.12777
    [33] Ashe M L,Newman M G,Wilson S J. Delay discounting and the use of mindful attention versus distraction in the treatment of drug addiction: A conceptual review[J]. J Exp Anal Behav,2015,103(1):234-248. doi: 10.1002/jeab.122
    [34] Lee W,Ray R,Bergen A W,et al,Thomas P. DRD1 associations with smoking abstinence across slow and normal nicotine metabolizers[J]. Pharmacogenet Genomics,2012,22(7):551-4. doi: 10.1097/FPC.0b013e3283539062
    [35] Yan Y,Jiang W,Liu L,et al. Dopamine controlssystemic inflammation through inhibition of NLRP3 inflammasome[J]. Cell,2015,160(1-2):62-73. doi: 10.1016/j.cell.2014.11.047
    [36] Cosentino M,Fietta A M,Ferrari M,et al. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholaminessubserving an autocrine/paracrine inhibitory functional loop[J]. Blood,2007,109(2):632-642. doi: 10.1182/blood-2006-01-028423
    [37] Ferrari M,Cosentino M,Marino F,et al. Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNAexpression and catecholamine production in human lymphocytes[J]. Biochem Pharmacol,2004,67(5):865-873. doi: 10.1016/j.bcp.2003.10.004
    [38] Tsunoda M. Role of catecholamine metabolism in blood pressure regulation using chemiluminescence reactiondetection[J]. Yakugaku Zasshi,2008,128(11):1589-1594 doi: 10.1248/yakushi.128.1589
    [39] M ravec B. Role of catecholamine-induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: Negative feedback loop of stress response[J]. Endocr Regul,2011,45(1):37-41
    [40] Nakano K,Higashi T,Takagi R,et al,Matsushita S. Dopaminereleased by dendritic cells polarizes Th2 differentiation[J]. Int Immunol,2009,21(6):645-654. doi: 10.1093/intimm/dxp033
    [41] Zanassi P,Paolillo M,Montecucco A,et al. Pharmacological and molecular evidence for dopamine D(1) receptor expression bystriatal astrocytes in culture[J]. J Neurosci Res,1999,58(4):544-552. doi: 10.1002/(SICI)1097-4547(19991115)58:4<544::AID-JNR7>3.0.CO;2-9
    [42] Zhang X,Zhou Z,Wang D,et al. Activation of phosphatidylinositol-linked D1-like receptor modulates FGF-2expression in astrocytes via IP3-dependent Ca2+ signaling[J]. J Neurosci,2009,29(24):7766-7775 doi: 10.1523/JNEUROSCI.0389-09.2009
    [43] Beaulieu J M,Gainetdinov R R. The physiology,signaling,and pharmacology of dopamine receptors[J]. Pharmacological Reviews,2011,63(1):182-217. doi: 10.1124/pr.110.002642
    [44] Reid K M,Steel D,Nair S,et al. Loss-of-function variants in DRD1 in infantile Parkinsonism-dystonia[J]. Cells,2023,12(7):1046 doi: 10.3390/cells12071046
    [45] 张超洁,商亚珍. CREB与阿尔茨海默病[J]. 承德医学院学报,2023,40(3):237-241.
    [46] Brami-Cherrier K,Valjent E,Garcia M,et al. Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: A new route to cAMP response element-binding protein phosphorylation[J]. J Neurosci,2002,22(20):8911-8921. doi: 10.1523/JNEUROSCI.22-20-08911.2002
    [47] Monsma F J,Jr.,Mahan L C,et al. Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation[J]. Proc Natl Acad Sci USA,1990,87(17):6723-6727. doi: 10.1073/pnas.87.17.6723
    [48] Cosentino M,Kustrimovic N,Ferrari M,et al. cAMP levels in lymphocytes and CD4+ regulatory T-cell functions are affected by dopamine receptor gene polymorphisms. Immunology[J]. Immunology,2018,153(3):337-341. doi: 10.1111/imm.12843
    [49] D’ SaC ,DumanRS . Antidepressants and neuroplasticity[J]. Bipolar Disord,2002,4(3): 183-194.
    [50] 李云峰,杨明,赵毅民,等. 巴戟天寡糖对皮质酮损伤的PC12细胞的保护作用[J]. 中国中药杂志,2000,25(9):39-42.
    [51] 李云峰,罗质璞. 丁螺环酮对皮质酮所致PC12细胞损伤的保护作用[J]. 中国药理学与毒理学杂志,2001,15(5):333-336.
    [52] Yan Y,Jiang W,Liu L,et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome[J]. Cell,2015,160(1-2):62-73. doi: 10.1016/j.cell.2014.11.047
    [53] Yang C,Kazanietz M G. Divergence and complexities in DAG signaling: looking beyond PKC[J]. Trends Pharmacol Sci,2003,24(11):602-608. doi: 10.1016/j.tips.2003.09.003
    [54] Felder C C,Jose P A,Axelrod J. The dopamine-1 agonist,SKF 82526,stimulates phospholipase-C activity independent of adenylate cyclase[J]. J Pharmacol Exp Ther,1989,248(1):171-175.
    [55] Berridge M J. Inositol trisphosphate and calcium signalling mechanisms[J]. Biochim Biophys Acta,2009,1793(6):933-940. doi: 10.1016/j.bbamcr.2008.10.005
    [56] Qin D,Liu P,Chen H,et al. Salicylate-induced ototoxicity of spiral ganglion neurons: Ca2+/CaMKII-mediated interaction between NMDA receptor and GABAA receptor[J]. Neurotox Res,2019,35(4):838-847. doi: 10.1007/s12640-019-0006-8
    [57] Zeng C,Villar V A,Yu P,et al. Reactive oxygen species and dopamine receptor function in essential hypertension[J]. Clin Exp Hypertens,2009,31(2):156-178. doi: 10.1080/10641960802621283
    [58] Kansra V,Chen C J,Lokhandwala M F. Dopamine fails to stimulate protein kinase C activity in renal proximal tubules of spontaneously hypertensive rats[J]. Clin Exp Hypertens,1995,17(5):837-845. doi: 10.3109/10641969509033638
    [59] Kim B,Yun J,Park B. Methamphetamine-induced neuronal damage: Neurotoxicity and neuroinflammation[J]. Biomol Ther,2020,28(5):381-388.
    [60] Premoli M. , Aria F., Bonini S. A., et al. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment[J]. Life Sci,2019,224(1):120-127.
    [61] Vitale R. M., Iannotti F. A., Amodeo P. The (poly)pharmacology of cannabidiol in neurological and neuropsychiatric disorders: Molecular mechanisms and targets[J]. International Journal of Molecular Sciences,2021,22(9):4876.
  • [1] 门欣怡, 赵静, 申永椿, 季辉, 王秀霞.  外周血免疫球蛋白、血沉、同型半胱氨酸与儿童中枢神经系统血管炎病情程度的关系及对预后的影响, 昆明医科大学学报. 2024, 45(): 1-7.
    [2] 张盛庆宇, 舒逍, 吴锡南, 李志强, 武慧欣, 张媛, 蒋玉融, 杨思佳, 木云珍.  1 800 MHz射频电磁场暴露对大鼠海马GFAP、NCAM和GABA受体表达的影响, 昆明医科大学学报. 2021, 42(9): 13-19. doi: 10.12259/j.issn.2095-610X.S20210939
    [3] 谢巍, 赵川, 王容, 王文平, 涂宏.  慢性乙型肝炎患者外周血T淋巴细胞程序性死亡受体1表达与HBV-DNA水平的相关性, 昆明医科大学学报. 2020, 41(02): 82-86.
    [4] 赵恒, 许彬, 赵广周, 李荣杰, 周百灵, 刘叶, 世淑兰.  脑脊液可溶性髓系细胞触发受体-1、白介素-6及白介素-10在儿童化脓性脑膜炎中的诊断价值, 昆明医科大学学报. 2020, 41(08): 121-125.
    [5] 王一航, 洪仕君, 钟磊磊, 解润芳, 彭艳霞, 李利华.  DA、5-HT及MAO在甲基苯丙胺和氯胺酮联合滥用依赖大鼠CPP效应中的表达量变化, 昆明医科大学学报. 2020, 41(03): 17-21.
    [6] 陈志彬, 莫艳萍, 杨钰, 陈灿昆, 杨靖宜, 万瑞雪, 范志祥, 龙莉.  趋化因子受体CX3CR1基因T280M多态性在云南彝族人群中的分布, 昆明医科大学学报. 2017, 38(08): 35-39.
    [7] 张帆.  Toll样受体-2和血红素加氧酶-1在复发性鼻息肉中的表达及意义, 昆明医科大学学报. 2014, 35(02): -.
    [8] 田锦涛.  脑缺血大鼠脑内AT1和AT2受体表达的免疫组化观察, 昆明医科大学学报. 2014, 35(05): -.
    [9] 胡继林.  CSF-1及其受体与早期自然流产关系的研究, 昆明医科大学学报. 2014, 35(08): -1.
    [10] 孟丽红.  首发为神经系统症状的低血糖反应临床分析, 昆明医科大学学报. 2013, 34(01): -.
    [11] 黄晓斌.  伽玛刀治疗吗啡依赖猴双侧伏隔核后多巴胺D3受体变化的研究, 昆明医科大学学报. 2013, 34(06): -.
    [12] 杨榆玲.  血管紧张素II 1型受体A1166C多态性在云南彝族人群中的分布, 昆明医科大学学报. 2012, 33(05): -.
    [13] 毕晓方.  α1A受体阻滞剂在上尿路结石术后应用的临床研究, 昆明医科大学学报. 2012, 33(11): -.
    [14] 李劲涛.  P38-一种信号分子在神经系统疾病中的作用, 昆明医科大学学报. 2012, 33(08): -.
    [15] 刘翱翔.  经颅磁刺激在神经系统疾病中的应用, 昆明医科大学学报. 2012, 33(05): -.
    [16] 李玉.  体外培养神经干细胞NGF、BDNF和NT-3及其受体trkA、trkB和trkC 的表达, 昆明医科大学学报. 2011, 32(02): 1-1.
    [17] BDNF在树鼩中枢神经系统的表达, 昆明医科大学学报. 2011, 32(09): -.
    [18] 周磊.  高温对大鼠胚胎神经管发育畸形中BDNF及其受体mRNA表达变化的影响, 昆明医科大学学报. 2009, 30(01): -.
    [19] 杨晓文.  高迁移率族蛋白1及生长因子受体Ⅲ在乳腺癌组织中的表达及其临床意义, 昆明医科大学学报. 2008, 29(01): -.
    [20] 丁鹏.  新生大鼠海马神经干细胞表达趋化因子受体CCR2的体外研究, 昆明医科大学学报. 2008, 29(01): -.
  • 加载中
计量
  • 文章访问数:  248
  • HTML全文浏览量:  233
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回