留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肽类药物的研究现状及临床应用进展

裴琪琦 陈潜 王捍英 田莉 冯贵珠

裴琪琦, 陈潜, 王捍英, 田莉, 冯贵珠. 肽类药物的研究现状及临床应用进展[J]. 昆明医科大学学报.
引用本文: 裴琪琦, 陈潜, 王捍英, 田莉, 冯贵珠. 肽类药物的研究现状及临床应用进展[J]. 昆明医科大学学报.
Qiqi PEI, Qian CHEN, Hanying WANG, Li TIAN, Guizhu FENG. Research Status and Clinical Application Progress of Peptide Drugs[J]. Journal of Kunming Medical University.
Citation: Qiqi PEI, Qian CHEN, Hanying WANG, Li TIAN, Guizhu FENG. Research Status and Clinical Application Progress of Peptide Drugs[J]. Journal of Kunming Medical University.

肽类药物的研究现状及临床应用进展

基金项目: 国家自然科学基金(82160680);昆明医科大学研究生创新基金(2025S146;2025B018)
详细信息
    作者简介:

    裴琪琦(2001~),女,云南昆明人,医学硕士,主要从事活性多肽的结构与功能研究工作

    通讯作者:

    冯贵珠,E-mail:fgz010623@163.com

  • 中图分类号: R736.4

Research Status and Clinical Application Progress of Peptide Drugs

  • 摘要: 随着传统化学药物研发难度的不断增加,肽类药物因具有高特异性、显著疗效、易代谢及低毒性等优势,逐渐成为药物研究与开发的热点。系统阐述了肽类药物的理化特性、主要优势及局限性,并总结了目前常用的结构修饰与递送策略。重点介绍了已获批上市肽类药物在糖尿病、癌症、细菌和病毒感染、多发性硬化症、骨质疏松症等多种疾病中的应用及其作用靶点。同时,对肽类药物在体内稳定性差、生物利用度低、给药途径受限等研发难题进行了分析,并探讨了基于分子修饰、纳米递送及计算机辅助设计等新技术的前景。综上,肽类药物在多领域治疗中展现出独特优势,但仍需突破制备、递送及耐药性等瓶颈,为未来精准治疗提供新的思路与方向。
  • 图  1  肽类药物递送系统策略及其克服生物屏障的机制

    Figure  1.  Peptide drug delivery system strategies and their mechanisms for overcoming biological barriers

    图  2  GLP-1受体信号通路机制图

    Figure  2.  Mechanism diagram of GLP-1 receptor signaling pathway

    图  3  Daptomycin破坏细菌膜电位模型图

    Figure  3.  Model diagram of Daptomycin disrupting bacterial membrane potential

    图  4  Enfuvirtide抑制HIV病毒膜融合示意图

    Figure  4.  Schematic diagram of Enfuvirtide inhibiting HIV viral membrane fusion

    图  5  肽类药物的研发现状与临床应用

    Figure  5.  Research and development status and clinical application of peptide drugs

    表  1  肽类药物在临床中的应用和作用靶点(1)

    Table  1.   Clinical application and targets of peptide drugs (1)

    药物名称主要靶点适应症
    ExenatideGLP-1受体2型糖尿病
    LixisenatideGLP-1受体2型糖尿病
    Pegylated LiraglutideGLP-1受体2型糖尿病
    AlbiglutideGLP-1受体2型糖尿病
    DulaglutideGLP-1受体2型糖尿病
    Bexagliflozin钠-葡萄糖共转运蛋白22型糖尿病
    SitagliptinDPP-42型糖尿病
    LinagliptinDPP-42型糖尿病
    SemaglutideGLP-1受体2型糖尿病、减重
    LiraglutideGLP-1受体2型糖尿病、减重
    TirzepatideGLP-1受体和GIP受体2型糖尿病、减重
    Pramlintide降钙素受体1型和2型糖尿病
    Setmelanotide黑色素皮质激素-4受体减重
    RGD peptideαvβ3整合素受体抗肿瘤药物递送
    Angiopep-2LRP-1受体抗胶质瘤药物递送
    SargramostimGM-CSF受体白血病、乳腺癌
    AtezolizumabPD-L1膀胱癌、非小细胞肺癌
    AbarelixGnRH受体前列腺癌
    DegarelixGnRH受体前列腺癌
    LeuprorelinGnRH受体前列腺癌、子宫肌瘤
    CetrorelixGnRH受体前列腺癌
    BuserelinGnRH受体前列腺癌
    GoserelinGnRH受体前列腺癌、乳腺癌、子宫内膜易位症
    NafarelinGnRH受体子宫内膜易位症
    TriptorelinGnRH受体乳腺癌
    GanirelixGnRH受体女性不孕
    Octreotide生长抑素受体类癌瘤及血管活性肠肽瘤、肢端肥大症
    Lanreotide生长抑素受体神经内分泌肿瘤、肢端肥大症
    Pasireotide生长抑素受体肢端肥大症、库欣综合征
    177Lu-dotatate生长抑素受体神经内分泌肿瘤
    68Ga-dotatate生长抑素受体神经内分泌肿瘤
    Carfilzomib20S蛋白酶体活性位点多发性骨髓瘤、结直肠癌
    Vancomycin抑制细胞壁合成革兰氏阳性菌感染
    Teicoplanin抑制细胞壁合成革兰氏阳性菌感染
    Dabavancin抑制细胞壁合成革兰氏阳性菌感染
    Oritavancin抑制细胞壁合成革兰氏阳性菌感染
    Telavancin抑制细胞壁合成革兰氏阳性菌感染
    Bacitracin抑制细胞壁合成革兰氏阳性菌感染
    DaptomycinCa2+离子依赖型破膜革兰氏阳性菌感染
    Colistin细菌膜革兰氏阴性菌感染
    BoceprevirNS3/4A蛋白酶HCV病毒
    DaclatasvirNS5A蛋白酶HCV病毒
    Lopinavir3CL蛋白酶/HIV蛋白酶SARS冠状病毒、MERS冠状病毒、HIV病毒
    下载: 导出CSV

    表  2  已获批用于糖尿病与减重的GLP-1受体相关肽类药物

    Table  2.   Approved GLP-1 receptor-related peptide drugs for diabetes and weight loss

    药物名称 主要靶点 适应症 特点
    艾塞那肽
    (Exenatide)
    GLP-1受体 2型糖尿病 首个获FDA批准的GLP-1RA,源自希拉毒蜥唾液。
    利拉鲁肽
    (Liraglutide)
    GLP-1受体 2型糖尿病、减重 脂肪酸链修饰,延长半衰期,每日一次注射。
    利司那肽
    (Lixisenatide)
    GLP-1受体 2型糖尿病 作用时间较短,主要控制餐后血糖。
    度拉糖肽
    (Dulaglutide)
    GLP-1受体 2型糖尿病、减重 Fc融合蛋白,半衰期长,每周一次注射。
    司美格鲁肽
    (Semaglutide)
    GLP-1受体 2型糖尿病、减重 脂肪酸链修饰,长效;首个口服GLP-1RA,代表递送技术突破。
    替尔泊肽
    (Tirzepatide)
    GIP受体、GLP-1受体 2型糖尿病、减重 首个双靶点激动剂,在降糖和减重方面展现出卓越疗效。
    下载: 导出CSV
  • [1] Ganesh A N, Heusser C, Garad S, et al. Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies[J]. Med Drug Discov, 2021, 9: 100079. doi: 10.1016/j.medidd.2020.100079
    [2] Jacobs P G, Levy C J, Brown S A, et al. Research gaps, challenges, and opportunities in automated insulin delivery systems[J]. J Diabetes Sci Technol, 2025, 19(4): 937-949. doi: 10.1177/19322968251338754
    [3] Chandarana C, Juwarwala I, Shetty S, et al. Peptide drugs: Current status and it’ s applications in the treatment of various diseases[J]. Curr Drug Res Rev, 2024, 16(3): 381-394. doi: 10.2174/0125899775295960240406073630
    [4] 窦树珍, 周治寰, 邹慧, 等. 多肽药物研发和市场格局分析与展望[J]. 中国生物工程杂志, 2024, 44(11): 110-122. doi: 10.13523/j.cb.2404013
    [5] Lau J L, Dunn M K. Therapeutic peptides: Historical perspectives, current development trends, and future directions[J]. Bioorg Med Chem, 2018, 26(10): 2700-2707. doi: 10.1016/j.bmc.2017.06.052
    [6] Huang W, Wang Y, Wang X, et al. Research progress on bioactive peptides in the treatment of oral diseases[J]. Zhong Nan da Xue Xue Bao Yi Xue Ban, 2025, 50(5): 907-912.
    [7] Hill T A, Shepherd N E, Diness F, et al. Constraining cyclic peptides to mimic protein structure motifs[J]. Angew Chem Int Ed, 2014, 53(48): 13020-13041. doi: 10.1002/anie.201401058
    [8] Jülke E M, Beck-Sickinger A G. Peptide therapeutics: Current status and future opportunity with focus on nose-to-brain delivery[J]. Peptides, 2025, 188: 171404. doi: 10.1016/j.peptides.2025.171404
    [9] Wu Z C, Isley N A, Boger D L. N-terminus alkylation of vancomycin: Ligand binding affinity, antimicrobial activity, and site-specific nature of quaternary trimethylammonium salt modification[J]. ACS Infect Dis, 2018, 4(10): 1468-1474. doi: 10.1021/acsinfecdis.8b00152
    [10] Sharma K K, Sharma K, Kudwal A, et al. Peptide-heterocycle conjugates as antifungals against cryptococcosis[J]. Asian J Org Chem, 2022, 11(7): e202200196. doi: 10.1002/ajoc.202200196
    [11] Sharma K K, Cassell R J, Meqbil Y J, et al. Modulating β-arrestin 2 recruitment at the δ- and μ-opioid receptors using peptidomimetic ligands[J]. RSC Med Chem, 2021, 12(11): 1958-1967. doi: 10.1039/D1MD00025J
    [12] Lenci E, Trabocchi A. Peptidomimetic toolbox for drug discovery[J]. Chem Soc Rev, 2020, 49(11): 3262-3277. doi: 10.1039/D0CS00102C
    [13] Yang J, Wang C, Yao C, et al. Site-specific incorporation of multiple thioamide substitutions into a peptide backbone via solid phase peptide synthesis[J]. J Org Chem, 2020, 85(3): 1484-1494. doi: 10.1021/acs.joc.9b02486
    [14] Sharma K, Sharma K K, Sharma A, et al. Peptide-based drug discovery: Current status and recent advances[J]. Drug Discov Today, 2023, 28(2): 103464. doi: 10.1016/j.drudis.2022.103464
    [15] Jain K K. An overview of drug delivery systems[J]. Methods Mol Biol, 2020, 2059: 1-54.
    [16] Boyer T L, Chao O, Hakim B, et al. Cartilage targeting cationic peptide carriers display deep cartilage penetration and retention in a rabbit model of post-traumatic osteoarthritis[J]. Osteoarthr Cartil, 2025, 33(6): 721-734. doi: 10.1016/j.joca.2025.04.001
    [17] Sánchez-López E, Gómara M J, Haro I. Nanotechnology-based platforms for vaginal delivery of peptide microbicides[J]. Curr Med Chem, 2021, 28(22): 4356-4379. doi: 10.2174/0929867328666201209095753
    [18] Jain A, Jain A, Gulbake A, et al. Peptide and protein delivery using new drug delivery systems[J]. Crit Rev Ther Drug Carrier Syst, 2013, 30(4): 293-329. doi: 10.1615/CritRevTherDrugCarrierSyst.2013006955
    [19] McLean B A, Wong C K, Campbell J E, et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation[J]. Endocr Rev, 2021, 42(2): 101-132. doi: 10.1210/endrev/bnaa032
    [20] Shahriar S M S, An J M, Hasan M N, et al. Plasmid DNA nanoparticles for nonviral oral gene therapy[J]. Nano Lett, 2021, 21(11): 4666-4675. doi: 10.1021/acs.nanolett.1c00832
    [21] Prabhakar S, Veerabhadraswamy P, Gandasi N R. Role of the extracellular matrix in amylin aggregation: Opportunities for improved therapy in type 2 diabetes mellitus[J]. J Biosci, 2025, 50: 68. doi: 10.1007/s12038-025-00554-y
    [22] Riddle M C, Nahra R, Han J, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: A randomized, two-way crossover study[J]. Diabetes Care, 2018, 41(11): 2346-2352. doi: 10.2337/dc18-1091
    [23] Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide[J]. J Med Chem, 2015, 58(18): 7370-7380. doi: 10.1021/acs.jmedchem.5b00726
    [24] Fu S, Xu X, Ma Y, et al. RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy[J]. J Drug Target, 2019, 27(1): 1-11. doi: 10.1080/1061186X.2018.1455841
    [25] di Polidoro A C, Cafarchio A, Vecchione D, et al. Revealing angiopep-2/LRP1 molecular interaction for optimal delivery to glioblastoma (GBM)[J]. Molecules, 2022, 27(19): 6696. doi: 10.3390/molecules27196696
    [26] Rahbar A, Hossain M S, Giver C R, et al. Intermittent sargramostim administration expands proliferating Naïve T cells, tregs, HLA-DR+ PD-L1+ monocytes and myeloid-derived suppressor cells: Results from a randomized placebo-controlled clinical trial of GM-CSF in patients with peripheral artery disease[J]. Blood, 2023, 142(Supplement 1): 5355.
    [27] Meyer C, Sims A H, Morgan K, et al. Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation[J]. Endocr Relat Cancer, 2013, 20(1): 123-136.
    [28] Al Musaimi O. Peptide therapeutics: Unveiling the potential against cancer-a journey through 1989[J]. Cancers (Basel), 2024, 16(5): 1032. doi: 10.3390/cancers16051032
    [29] Bandow J E, Metzler-Nolte N. New ways of killing the beast: Prospects for inorganic-organic hybrid nanomaterials as antibacterial agents[J]. Chembiochem, 2009, 10(18): 2847-2850. doi: 10.1002/cbic.200900628
    [30] Flint A J, Davis A P. Vancomycin mimicry: Towards new supramolecular antibiotics[J]. Org Biomol Chem, 2022, 20(39): 7694-7712. doi: 10.1039/D2OB01381A
    [31] Grein F, Müller A, Scherer K M, et al. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids[J]. Nat Commun, 2020, 11: 1455. doi: 10.1038/s41467-020-15257-1
    [32] Heidary M, Khosravi A D, Khoshnood S, et al. Daptomycin[J]. J Antimicrob Chemother, 2018, 73(1): 1-11. doi: 10.1093/jac/dkx349
    [33] Bialvaei A Z, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance[J]. Curr Med Res Opin, 2015, 31(4): 707-721. doi: 10.1185/03007995.2015.1018989
    [34] Xu W, Pu J, Su S, et al. Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41[J]. AIDS, 2019, 33(10): 1545-1555. doi: 10.1097/QAD.0000000000002208
    [35] Figueira T N, Domingues M M, Illien F, et al. Enfuvirtide-protoporphyrin IX dual-loaded liposomes: in vitro evidence of synergy against HIV-1 entry into cells[J]. ACS Infect Dis, 2020, 6(2): 224-236. doi: 10.1021/acsinfecdis.9b00285
    [36] Yuan R, Wang B, Lu W, et al. A distinct region in erythropoietin that induces immuno/inflammatory modulation and tissue protection[J]. Neurotherapeutics, 2015, 12(4): 850-861. doi: 10.1007/s13311-015-0379-1
    [37] Soares de Souza A, Rudin S, Yu D, et al. Treatment with ATX-MS-1467 persistently triggers IL-10, but not pro-inflammatory cytokine release and induces a population of lag3+CD4+ cells in a humanized HLA/TCR mouse model (P4.002)[J]. Neurology, 2015, 84(14_supplement): P4.002. doi: 10.1212/WNL.84.14_supplement.P4.002
    [38] Gaindh D, Choi Y B, Marchese M, et al. Prolonged beneficial effect of brief erythropoietin peptide JM4 therapy on chronic relapsing EAE[J]. Neurotherapeutics, 2021, 18(1): 401-411. doi: 10.1007/s13311-020-00923-5
    [39] Charles T, Moss D L, Bhat P, et al. CD4+ T-cell epitope prediction by combined analysis of antigen conformational flexibility and peptide-MHCII binding affinity[J]. Biochemistry, 2022, 61(15): 1585-1599. doi: 10.1021/acs.biochem.2c00237
    [40] Ng S L, Leno-Duran E, Samanta D, et al. Genetically modified hematopoietic stem/progenitor cells that produce IL-10-secreting regulatory T cells[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2634-2639. doi: 10.1073/pnas.1811984116
    [41] Papaluca T, Gow P. Terlipressin: Current and emerging indications in chronic liver disease[J]. J Gastroenterol Hepatol, 2018, 33(3): 591-598. doi: 10.1111/jgh.14009
    [42] Terbah R, Gow P, Sinclair M, et al. Terlipressin for type 1 hepatorenal syndrome[J]. Dig Dis Sci, 2020, 65(8): 2454-2455. doi: 10.1007/s10620-020-06370-8
    [43] Jamil K, Pappas S C, Devarakonda K R. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2[J]. J Exp Pharmacol, 2018, 10: 1-7.
    [44] Felsenfeld A J, Levine B S. Calcitonin, the forgotten hormone: Does it deserve to be forgotten?[J]. Clin Kidney J, 2015, 8(2): 180-187. doi: 10.1093/ckj/sfv011
    [45] Xu J, Wang J, Chen X, et al. The effects of calcitonin gene-related peptide on bone homeostasis and regeneration[J]. Curr Osteoporos Rep, 2020, 18(6): 621-632. doi: 10.1007/s11914-020-00624-0
    [46] Casado E, Martínez-Díaz-Guerra G, Caeiro J R. PTH/PTHrP analogues as osteoanabolic treatment in patients with osteoporosis[J]. Med Clin (Barc), 2025, 165(4): 107076. doi: 10.1016/j.medcli.2025.107076
    [47] Gurnari C, Awada H, Pagliuca S, et al. Paroxysmal nocturnal hemoglobinuria–related thrombosis in the era of novel therapies: A 2043-patient-year analysis[J]. Blood, 2024, 144(2): 145-155. doi: 10.1182/blood.2024023988
    [48] Hillmen P, Szer J, Weitz I, et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria[J]. N Engl J Med, 2021, 384(11): 1028-1037. doi: 10.1056/NEJMoa2029073
    [49] Sukhanova V A, Uspenskaya E V, Ainaz S, et al. Development of a comprehensive approach to quality control of dermorphin derivative—Representative of synthetic opioid peptides with non-narcotic type of analgesia[J]. Sci Pharm, 2025, 93(1): 3.
    [50] Miljanich G P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain[J]. Curr Med Chem, 2004, 11(23): 3029-3040. doi: 10.2174/0929867043363884
    [51] Lin J, Chen S, Butt U D, et al. A comprehensive review on ziconotide[J]. Heliyon, 2024, 10(10): e31105. doi: 10.1016/j.heliyon.2024.e31105
    [52] Massironi S, Cavalcoli F, Rausa E, et al. Understanding short bowel syndrome: Current status and future perspectives[J]. Dig Liver Dis, 2020, 52(3): 253-261. doi: 10.1016/j.dld.2019.11.013
    [53] Jamshidi Kandjani O, Alizadeh A A, Moosavi-Movahedi A A, et al. Expression, purification and molecular dynamics simulation of extracellular domain of glucagon-like peptide-2 receptor linked to teduglutide[J]. Int J Biol Macromol, 2021, 184: 812-820. doi: 10.1016/j.ijbiomac.2021.06.141
    [54] Schmid H. Peginesatide for the treatment of renal disease-induced Anemia[J]. Expert Opin Pharmacother, 2013, 14(7): 937-948. doi: 10.1517/14656566.2013.780695
    [55] Piehl E, Fernandez-Bustamante A. Lucinactant for the treatment of respiratory distress syndrome in neonates[J]. Drugs Today (Barc), 2012, 48(9): 587-593. doi: 10.1358/dot.2012.48.9.1835160
    [56] Zhu K, Meng L, Luo J, et al. Taltirelin induces TH expression by regulating TRHR and RARα in medium spiny neurons[J]. J Transl Med, 2024, 22(1): 1158. doi: 10.1186/s12967-024-06020-x
    [57] Shirley M. Zilucoplan: First approval[J]. Drugs, 2024, 84(1): 99-104. doi: 10.1007/s40265-023-01977-3
    [58] Wensink D, Wagenmakers M A E M, Langendonk J G. Afamelanotide for prevention of phototoxicity in erythropoietic protoporphyria[J]. Expert Rev Clin Pharmacol, 2021, 14(2): 151-160. doi: 10.1080/17512433.2021.1879638
    [59] Cho Y M. Glucagon-like peptide-1 therapy for youth with type 2 diabetes[J]. J Diabetes Investig, 2023, 14(3): 362-363. doi: 10.1111/jdi.13953
    [60] Tran K L, Park Y I, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes[J]. Am Health Drug Benefits, 2017, 10(4): 178-188.
    [61] Mookherjee N, Anderson M A, Haagsman H P, et al. Antimicrobial host defence peptides: Functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5): 311-332. doi: 10.1038/s41573-019-0058-8
    [62] Basith S, Manavalan B, Hwan Shin T, et al. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening[J]. Med Res Rev, 2020, 40(4): 1276-1314. doi: 10.1002/med.21658
  • [1] 李梦焕, 艾丽, 李永霞.  单细胞RNA测序:慢性阻塞性肺疾病研究的新视角, 昆明医科大学学报. 2025, 46(3): 1-6. doi: 10.12259/j.issn.2095-610X.S20250301
    [2] 王秀花, 何泽然, 李志蕻, 王慧铃, 苏红艳.  脂肪乳氨基酸(17)葡萄糖(11%)注射液临床应用点评与规范、合理使用, 昆明医科大学学报. 2023, 44(3): 138-142. doi: 10.12259/j.issn.2095-610X.S20230318
    [3] 寸睿, 陈美玲.  氟桂利嗪联合银杏达莫治疗老年眩晕的疗效及临床应用, 昆明医科大学学报. 2022, 43(7): 116-120. doi: 10.12259/j.issn.2095-610X.S20220703
    [4] 蒋鸿雁, 张瑞林, 曹艳, 吴海鹰, 李坪.  大麻二酚在医学上的应用前景, 昆明医科大学学报. 2021, 42(2): 147-152. doi: 10.12259/j.issn.2095-610X.S20210208
    [5] 杨淑迪, 钟雨莉, 刘玲, 田新.  加速康复外科在新生儿围手术期管理中的应用与展望, 昆明医科大学学报. 2020, 41(05): 1-6.
    [6] 曾怡, 杨敏, 廖云娟, 何振坤, 连希艳.  多靶点治疗IV+V型狼疮肾炎的临床疗效及对血清白细胞介素水平的作用评价, 昆明医科大学学报. 2019, 40(07): 96-99.
    [7] 杨玥, 陶建平.  右美托咪定的临床麻醉应用进展, 昆明医科大学学报. 2019, 40(12): 135-139.
    [8] 王秀花, 杨重明, 杨超, 张光云, 任东伟, 王学昌.  临沧市人民医院抗肿瘤药物临床应用评价, 昆明医科大学学报. 2017, 38(07): 88-92.
    [9] 周莹.  二代测序技术在临床医学上的相关应用, 昆明医科大学学报. 2016, 37(03): -.
    [10] 李建钢.  改良视可尼喉镜插管法在颈椎手术气管插管中的临床应用, 昆明医科大学学报. 2015, 36(06): -1.
    [11] 王参智.  MGMT、XRCC1基因在脑胶质瘤中的表达及其临床应用, 昆明医科大学学报. 2015, 36(12): -.
    [12] 于洋.  神经生长因子NGF的神经元保护作用机制及临床应用研究现状, 昆明医科大学学报. 2014, 35(02): -.
    [13] 李建钢.  视可尼纤维喉镜在困难气道中的临床应用, 昆明医科大学学报. 2013, 34(12): -1.
    [14] 杜雄.  CgA 和 PCA3的表达在前列腺癌患者诊断中的应用研究, 昆明医科大学学报. 2013, 34(07): -.
    [15] 张洪江.  经阴道彩超诊断宫内组织残留的临床分析, 昆明医科大学学报. 2012, 33(08): -.
    [16] 宋超.  多层螺旋CT对结、直肠息肉检查的临床应用, 昆明医科大学学报. 2012, 33(01): -.
    [17] 胶囊内镜在消化道疾病的临床应用, 昆明医科大学学报. 2011, 32(06): -.
    [18] 系统化全程健康教育在PICC置管患者中的临床应用研究, 昆明医科大学学报. 2011, 32(05): -.
    [19] 张旋.  肽转运载体与肽和仿肽类药物肺部转运, 昆明医科大学学报. 2007, 28(06): -.
    [20] 孙杰.  去骨瓣减压术的临床应用, 昆明医科大学学报. 2007, 28(06): -.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  67
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-15
  • 网络出版日期:  2025-11-06

目录

    /

    返回文章
    返回