Volume 42 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Zhi-wei LI, Jian-feng HUANG, Jie WEN, Fei LI, Xue-rong XIAO, Peng-fei WANG, Xia CAO. Metabolomics Studies on Feces and Serum from Type 2 Diabetes Mellitus[J]. Journal of Kunming Medical University, 2021, 42(2): 54-63. doi: 10.12259/j.issn.2095-610X.S20210211
Citation: Zhi-wei LI, Jian-feng HUANG, Jie WEN, Fei LI, Xue-rong XIAO, Peng-fei WANG, Xia CAO. Metabolomics Studies on Feces and Serum from Type 2 Diabetes Mellitus[J]. Journal of Kunming Medical University, 2021, 42(2): 54-63. doi: 10.12259/j.issn.2095-610X.S20210211

Metabolomics Studies on Feces and Serum from Type 2 Diabetes Mellitus

doi: 10.12259/j.issn.2095-610X.S20210211
  • Received Date: 2020-11-12
  • Publish Date: 2021-03-05
  •   Objective  To study the metabolomic differences of serum and feces between patients with type 2 diabetes and healthy people, and analyze the correlation between different metabolites and type 2 diabetes.  Methods  From January 2018 to March 2019, 53 patients with newly diagnosed type 2 diabetes mellitus and 30 healthy controls were enrolled in the Department of Endocrinology, the Second Affiliated Hospital of Kunming Medical University. The serum metabolites of the two groups and the fecal metabolites of 30 diabetic patients and the control group were detected by ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) To carry out non targeted and targeted metabolomics studies. Spearman correlation analysis method was used to analyze the correlation between the differential metabolites in serum and stool and related indicators of type 2 diabetes.  Results  Fifteen differential metabolites were identified in serum samples of type 2 diabetes group and healthy control group, and 6 differential metabolites were identified in stool samples. The levels of glutamine, azelaic acid, sebacic acid, 3-hydroxysebacic acid and other dicarboxylic acid hydroxylated derivatives in patients with diabetes were significantly lower than those in healthy controls (P < 0.01), while the levels of succinylacetoacetate, valine, leucine, glucose and lactic acid in patients with diabetes were significantly higher than those in healthy controls (P < 0.01). In the fecal metabolites, deoxycholic acid, chenodeoxycholic acid and other bile acids also had a certain positive correlation with the blood glucose concentration of the subjects, and univariate analysis results showed that compared with the healthy control group, the blood glucose concentration of the subjects was significantly higher in the two groups The serum levels of deoxycholic acid and chenodeoxycholic acid were significantly increased in patients with uropathy.  Conclusions  There are obvious differences in serum metabolomics between patients with type 2 diabetes mellitus and healthy people, and these metabolites are closely related to the occurrence and development of diabetes mellitus. In fecal metabonomics, the level of bile acid in diabetic patients is closely related to the change of blood glucose concentration.
  • loading
  • [1]
    Friedrich,N. Metabolomics in diabetes research[J]. J Endocrinol,2012,215(1):29-42. doi: 10.1530/JOE-12-0120
    [2]
    刘桠名,徐冕,颜悦新,等. 基于代谢组学的脓毒症大鼠生物标志物研究[J]. 昆明医科大学学报,2019,40(06):16-22. doi: 10.3969/j.issn.1003-4706.2019.06.004
    [3]
    任繁栋,丁筱雪,蔡芳,等. 基于超高效液相色谱-高分辨质谱联用技术研究冠心病及冠心病合并2型糖尿病患者代谢特征[J]. 分析化学,2020,48(01):49-56.
    [4]
    钱荣立. 关于糖尿病的新诊断标准与分型[J]. 中国糖尿病杂志,2000,8(01):4-5.
    [5]
    Bliksrud Y T,Ellingsen A,Bjørås M. Fumarylacetoacetate inhibits the initial step of the base excision repair pathway:implication for the pathogenesis of tyrosinemia type I[J]. J Inherit Metab Dis,2013,36(5):773-778. doi: 10.1007/s10545-012-9556-0
    [6]
    Alobaidy H. A review of metabolic disorder of amino acid tyrosinemia type I:when to suspect and how to diagnose[J]. Iosr Journal of Pharmacy & Biological Sciences,2017,12(2):56-64.
    [7]
    Arneth B,Arneth R,Shams M. Metabolomics of type 1 and type 2 diabetes[J]. International Journal of Molecular Ences,2019,20(10):2467-2480.
    [8]
    Sun Y,Gao H Y,Fan Z Y,et al. Metabolomics signatures in type 2 diabetes:a systematic review and integrative analysis[J]. J Clin Endocrinol Metab,2020,105(4):1000-1008. doi: 10.1210/clinem/dgz240
    [9]
    Wang T J,Larson M G,Vasan R S,et al. Metabolite profiles and the risk of developing diabetes[J]. Nat Med,2011,17(4):448-453. doi: 10.1038/nm.2307
    [10]
    Hameed A,Mojsak P,Buczynska A,et al. Altered metabolome of lipids and amino acids species:a source of early signature biomarkers of T2DM[J]. J Clin Med,2020,9(7):2257-2302. doi: 10.3390/jcm9072257
    [11]
    Cheng S,Rhee E P,Larson M G,et al. Metabolite profiling identifies pathways associated with metabolic risk in humans[J]. Circulation,2012,125(18):2222-2231. doi: 10.1161/CIRCULATIONAHA.111.067827
    [12]
    Long J,Liu L,Jia Q,et al. Integrated biomarker for type 2 diabetes mellitus and impaired fasting glucose based on metabolomics analysis using ultra-high performance liquid chromatography quadrupole-Orbitrap high-resolution accurate mass spectrometry[J]. Rapid Commun Mass Spectrom,2020,34(12):e8779.
    [13]
    Calvani R,Rodriguez-Mañas L,Picca A,et al. Identification of a circulating amino acid signature in frail older persons with type 2 diabetes mellitus:results from the metabofrail study[J]. Nutrients,2020,12(1):199-210. doi: 10.3390/nu12010199
    [14]
    Muthulakshmi S,Saravanan R. Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet induced type 2 diabetic mice[J]. Biochimie,2013,95(6):1239-1244.
    [15]
    Mingrone G,Castagneto-Gissey L,Macé K. Use of dicarboxylic acids in type 2 diabetes[J]. Br J Clin Pharmacol,2013,75(3):671-676. doi: 10.1111/j.1365-2125.2012.04177.x
    [16]
    Muthulakshmi S,Chakrabarti A K,Mukherjee S. Gene expression profile of high-fat diet-fed C57BL/6J mice:in search of potential role of azelaic acid[J]. J Physiol Biochem,2015,71(1):29-42. doi: 10.1007/s13105-014-0376-6
    [17]
    Vinaixa M,Rodriguez M A,Samino S,et al. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy[J]. PLoS One,2011,6(12):e29052. doi: 10.1371/journal.pone.0029052
    [18]
    Streeper R T,Louden C,Izbicka E. Oral azelaic acid ester decreases markers of insulin resistance in overweight human male subjects[J]. In Vivo,2020,34(3):1173-1186.
    [19]
    Lien F,Berthier A,Bouchaert E,et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk[J]. J Clin Invest,2014,124(3):1037-1051. doi: 10.1172/JCI68815
    [20]
    Kazgan N,Metukuri M R,Purushotham A,et al. Intestine-specific deletion of SIRT1 in mice impairs DCoH2–HNF-1α–FXR signaling and alters systemic bile acid homeostasis[J]. Gastroenterology,2014,146(4):1006-1016. doi: 10.1053/j.gastro.2013.12.029
    [21]
    Rooks M G,Garrett W S. Gut microbiota,metabolites and host immunity[J]. Nat Rev Immunol,2016,16(6):341-352. doi: 10.1038/nri.2016.42
    [22]
    Long S L,Gahan C,Joyce S A. Interactions between gut bacteria and bile in health and disease[J]. Mol Aspects Med,2017,56(4):54-65.
    [23]
    Swann J R,Want E J,Geier F M,et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments[J]. Proc Natl Acad Sci U S A,2011,108(Suppl 1):4523-4530.
    [24]
    Behr C,Slopianka M,Haake V,et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats[J]. Toxicology & Applied Pharmacology,2019,363(2):79-87.
    [25]
    Merlen G,Ursic-Bedoya J,Jourdainne V,et al. Bile acids and their receptors during liver regeneration:“Dangerous protectors”[J]. Mol Aspects Med,2017,56(4):25-33.
    [26]
    Tian L,Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion[J]. J Diabetes,2016,8(6):753-765. doi: 10.1111/1753-0407.12439
    [27]
    Pathak P,Xie C,Nichols R G,et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism[J]. Hepatology,2018,68(4):1574-1588. doi: 10.1002/hep.29857
  • Relative Articles

    [1] Yu CHANG, Li GUI, Ruonan LI. Observation of Liraglutide's Effect on Function of Pancreatic Islets β-Cell in Type 2 Diabetes. Journal of Kunming Medical University, 2025, 46(2): 134-140.  doi: 10.12259/j.issn.2095-610X.S20250219
    [2] Xinlin ZHU, Yanan WU, Qi MENG, Qianzi YANG, Yuanbiao LI, Junheng TAO, Mengyang HE. Influence of Medication Compliance of Type 2 Diabetes Chronic Disease Management Patients in Two Communities of Kunming on Disease Control. Journal of Kunming Medical University, 2024, 45(3): 79-83.  doi: 10.12259/j.issn.2095-610X.S20240312
    [3] Jinbao XIAO, Junda ZHAO, Junqi MA. Metabolomics of Siha Supernatant in Cervical Cancer Cells with Down-regulated HPV16 E6/E7 Expression. Journal of Kunming Medical University, 2024, 45(1): 22-27.  doi: 10.12259/j.issn.2095-610X.S20240104
    [4] Ling NIU, Boyi LI, Cuijuan MIAO, Cheng ZHANG, Yan TANG, Fang LIU, Rong MA. Relationship between Leptin,Uric Acid,and Obesity in Type 2 Diabetes Mellitus. Journal of Kunming Medical University, 2023, 44(11): 140-144.  doi: 10.12259/j.issn.2095-610X.S20231121
    [5] Fang SUN, Shiying HUANG, Shu LIU, Jingyun FU. Association between Glucose Time in Range and Carotid Artery Intima-media Thickness in Type-2 Diabetes Mellitus. Journal of Kunming Medical University, 2023, 44(4): 48-52.  doi: 10.12259/j.issn.2095-610X.S20230427
    [6] Er-shu RUAN, Shuo WANG, Hui SU, Feng-qiong YIN, Zhong-yi QIAN, Jian-yu YANG. Effect of Ginsenoside Rg1 on Renal Protection in Type 2 Diabetic Rats. Journal of Kunming Medical University, 2021, 42(6): 50-55.  doi: 10.12259/j.issn.2095-610X.S20210625
    [7] Qiong ZHOU, Bao-kun PENG, Xiao-chun WENG, Zhen JU, Nuo-pi-chu SUN, Zhe TANG. Clinical Characteristics of Newly Diagnosed Type 2 Diabetes Mellitus and Influencing Factors of Glycosylated Hemoglobin Among Tibetans in Deqin. Journal of Kunming Medical University, 2021, 42(8): 106-110.  doi: 10.12259/j.issn.2095-610X.S20210819
    [8] Lu YANG, Wen-jun SHI, Ling ZHAO, Shi-gang DU, Pei-qi CHEN, Ting-yu KE. The Correlation between Visceral Fat Area in Patients with Type 2 Diabetes and Obesity and Glycolipid Metabolism. Journal of Kunming Medical University, 2021, 42(9): 65-70.  doi: 10.12259/j.issn.2095-610X.S20210932
    [9] Ming YAN, Jian-yun YU, Sheng-jie NIE, Yong-qiang QU, Shang-wen WANG, Rui WANG, Jun-jie SHU, Huan LIU, Shu-hua LI. Metabonomics of Scopolamine Intoxication in Rats. Journal of Kunming Medical University, 2021, 42(4): 13-19.  doi: 10.12259/j.issn.2095-610X.S20210403
    [10] Le Xiao Jing , Chen Jie , Zhang Fan , Li Hui Fang . . Journal of Kunming Medical University, 2020, 41(05): 145-149.
    [11] Wang Jin Rui , Yang Ying . . Journal of Kunming Medical University, 2019, 40(04): 131-135.
    [12] Su Xiao Yang , Zhao Yu Mei , Nian Xin , Song Dian Ping . . Journal of Kunming Medical University, 2019, 40(12): 73-79.
    [13] Zhu Li , Qiu Hong Mei , Zhou Xiao Fang , Cai Hai Gang , Liu Kai Ping , Zhou Yuan Yuan . . Journal of Kunming Medical University, 2018, 39(11): 83-86.
    [14] Han Wen Ju , Niu Ben , Liang Yun, Duan Xiao Yan , Su Heng , Xue Yuan Ming . The Relationship between Thyroid Hormone and Purine Metabolism and Body Weight in Patients with Type II Diabetes and Normal Thyroid Function. Journal of Kunming Medical University, 2016, 37(11): 82-85.
    [15] Xiang Xi . . Journal of Kunming Medical University,
    [16] Wang Xiang Yun . . Journal of Kunming Medical University,
    [17] Du Juan . . Journal of Kunming Medical University,
    [18] He Yan . . Journal of Kunming Medical University,
    [19] Wang Cun De . . Journal of Kunming Medical University,
    [20] Li Xian Li . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (5037) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return