Shan JIANG, Pengyu LI, Ying HUANG. Epidemiological Analysis of Brucellosis in Some Areas of Yunnan[J]. Journal of Kunming Medical University, 2022, 43(10): 43-48. doi: 10.12259/j.issn.2095-610X.S20221008
Citation: Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction[J]. Journal of Kunming Medical University, 2022, 43(12): 58-65. doi: 10.12259/j.issn.2095-610X.S20221212

Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction

doi: 10.12259/j.issn.2095-610X.S20221212
  • Received Date: 2022-05-08
    Available Online: 2022-12-05
  • Publish Date: 2022-12-25
  •   Objective   To develop and validate a plasma osmolality prediction model for the risk of in-hospital death in critically ill patients with acute ST-segment elevation myocardial infarction.   Methods  By retrospective analysis of patients' electronic medical record data, patients with severe STEMI admitted to the Department of Cardiovascular Medicine, Affiliated Hospital of Yunnan University from January 2015 to December 2020 were selected. General information, laboratory examination, comorbid diseases and medications of the patients were extracted to screen the risk factors of in-hospital death of severe STEMI patients and establish a prediction model.   Results  LASSO regression and multivariate Logistic regression were used and identified albumin (ALB), leukocyte (WBC), platelet (PLT), serum creatinine (Scr), statins medication, angiotensin-converting enzyme inhibitors (ACEI) medication or angiotensin-converting enzyme receptor antagonists (ARB), and plasma osmosis Pressure as independent predictor of in-hospital death in severe STEMI patients (P < 0.05). A nomogram was drawn based on the 7 predictive variables. Model test results showed good differentiation and calibration, and decision curve analysis (DCA) showed a threshold probability of 5%-95%.   Conclusion  The prediction model has good discrimination and calibration, and can be used as a reference tool for assessing the risk of in-hospital mortality in critically ill patients with STEMI.
  • [1]
    Liu S,Li Y,Zeng X,et al. Burden of cardiovascular diseases in China,1990-2016:Findings from the 2016 global burden of disease study[J]. JAMA Cardiol,2019,4(4):342-352. doi: 10.1001/jamacardio.2019.0295
    [2]
    Fan F,Li Y,Zhang Y,et al. Chest pain center accreditation is associated with improved in-hospital outcomes of acute myocardial infarction patients in China:Findings from the CCC-ACS project[J]. J Am Heart Assoc,2019,8(21):e013384. doi: 10.1161/JAHA.119.013384
    [3]
    Garcia-Osuna A,Sans-Rosello J,Ferrero-Gregori A,et al. Risk assessment after ST-segment elevation myocardial infarction:Can biomarkers improve the performance of clinical variables[J]. J Clin Med,2022,11(5):1266.
    [4]
    Roohafza H, Noohi F, Hosseini S G, et al. A cardiovascular risk assessment model according to behavioral, psychosocial and traditional factors in patients with ST-segment elevation myocardial infarction (cras-mi): Review of literature and methodology of a multi-center cohort study[J]. Curr Probl Cardiol, 2022, 101158.
    [5]
    Kahraman S,Agus H Z,Avci Y,et al. The neutrophil to lymphocyte ratio (nlr) is associated with residual syntax score in patients with ST-segment elevation myocardial infarction[J]. Angiology,2021,72(2):166-173. doi: 10.1177/0003319720958556
    [6]
    Lim E,Cheng Y,Reuschel C,et al. Risk-adjusted in-hospital mortality models for congestive heart failure and acute myocardial infarction:Value of clinical laboratory data and race/ethnicity[J]. Health Serv Res,2015,50(Suppl 1):1351-1371.
    [7]
    Wang X,Wang Z,Li B,et al. Prognosis evaluation of universal acute coronary syndrome:The interplay between syntax score and apob/apoa1[J]. BMC Cardiovasc Disord,2020,20(1):293. doi: 10.1186/s12872-020-01562-6
    [8]
    Fukutomi M, Nishihira K, Honda S, et al. Difference in the in-hospital prognosis between ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction with high killip class: Data from the Japan acute myocardial infarction registry[J]. Eur Heart J Acute Cardiovasc Care, 2020, 2048872620926681.
    [9]
    Rohla M,Freynhofer M K,Tentzeris I,et al. Plasma osmolality predicts clinical outcome in patients with acute coronary syndrome undergoing percutaneous coronary intervention[J]. Eur Heart J Acute Cardiovasc Care,2014,3(1):84-92. doi: 10.1177/2048872613516018
    [10]
    Shen Y,Cheng X,Ying M,et al. Association between serum osmolarity and mortality in patients who are critically ill:A retrospective cohort study[J]. BMJ Open,2017,7(5):e015729.
    [11]
    Thygesen K,Alpert J S,Jaffe A S,et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol,2018,72(18):2231-2264. doi: 10.1016/j.jacc.2018.08.1038
    [12]
    Dorwart W V,Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations,and the prognostic value of such calculations[J]. Clin Chem,1975,21(2):190-194. doi: 10.1093/clinchem/21.2.190
    [13]
    Kosmidou I,Redfors B,Selker H P,et al. Infarct size,left ventricular function,and prognosis in women compared to men after primary percutaneous coronary intervention in ST-segment elevation myocardial infarction:Results from an individual patient-level pooled analysis of 10 randomized trials[J]. Eur Heart J,2017,38(21):1656-1663.
    [14]
    Reinstadler S J,Stiermaier T,Eitel C,et al. Impact of atrial fibrillation during ST-segment-elevation myocardial infarction on infarct characteristics and prognosis[J]. Circ Cardiovasc Imaging,2018,11(2):e006955.
    [15]
    Goriki Y,Tanaka A,Nishihira K,et al. A novel predictive model for in-hospital mortality based on a combination of multiple blood variables in patients with ST-segment-elevation myocardial infarction[J]. J Clin Med,2020,9(3):852. doi: 10.3390/jcm9030852
    [16]
    Liu Z,Liu L,Cheng J,et al. Risk prediction model based on biomarkers of remodeling in patients with acute anterior ST-segment elevation myocardial infarction[J]. Med Sci Monit,2021,27(74):e927404.
    [17]
    Puodzhiukinene M Z,Mitskiavichene A A,Bluzhaĭte I. electrolyte concentration in the plasma and tissue cells of patients with ventricular arrhythmias in the acute period of myocardial infarction[J]. Kardiologiia,1987,27(2):98-100.
    [18]
    Urrows S T. Fluid and electrolyte balance in the patient with a myocardial infarction[J]. Nurs Clin North Am,1980,15(3):603-615. doi: 10.1016/S0029-6465(22)00573-4
    [19]
    D A, Pandit V R, Kadhiravan T, et al, Cardiac arrhythmias, electrolyte abnormalities and serum cardiac glycoside concentrations in yellow oleander (cascabela thevetia) poisoning - a prospective study[J]. Clin Toxicol (Phila), 2019, 57(2): 104-111.
    [20]
    Epstein M,Roy-Chaudhury P. Arrhythmias and sudden cardiac death in hemodialysis patients. Temporal profile,electrolyte abnormalities,and potential targeted therapies[J]. Nephrol News Issues,2016,30(4):23-26.
    [21]
    Capes S E,Hunt D,Malmberg K,et al. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes:A systematic overview[J]. Lancet,2000,355(9206):773-778. doi: 10.1016/S0140-6736(99)08415-9
    [22]
    Laichuthai N,Abdul-Ghani M,Kosiborod M,et al. Newly discovered abnormal glucose tolerance in patients with acute myocardial infarction and cardiovascular outcomes:A meta-analysis[J]. Diabetes Care,2020,43(8):1958-1966. doi: 10.2337/dc20-0059
    [23]
    Lee J H,Bae M H,Yang D H,et al. Prognostic value of the age,creatinine,and ejection fraction score for 1-year mortality in 30-day survivors who underwent percutaneous coronary intervention after acute myocardial infarction[J]. Am J Cardiol,2015,115(9):1167-1173. doi: 10.1016/j.amjcard.2015.02.001
    [24]
    Acet H,Ertaş F,Bilik M Z,et al. The relationship between neutrophil to lymphocyte ratio,platelet to lymphocyte ratio and thrombolysis in myocardial infarction risk score in patients with ST elevation acute myocardial infarction before primary coronary intervention[J]. Postepy Kardiol Interwencyjnej,2015,11(2):126-135.
    [25]
    Islam M S,Islam M N,Kundu S K,et al. Serum albumin level and in-hospital outcome of patients with first attack acute myocardial infarction[J]. Mymensingh Med J,2019,28(4):744-751.
    [26]
    Liu H,Zhang J,Yu J,et al. Prognostic value of serum albumin-to-creatinine ratio in patients with acute myocardial infarction:Results from the retrospective evaluation of acute chest pain study[J]. Medicine (Baltimore),2020,99(35):e22049.
    [27]
    Palatini P. Glomerular hyperfiltration:A marker of early renal damage in pre-diabetes and pre-hypertension[J]. Nephrol Dial Transplant,2012,27(5):1708-1714. doi: 10.1093/ndt/gfs037
    [28]
    Shiyovich A,Gilutz H,Plakht Y. White blood cell subtypes are associated with a greater long-term risk of death after acute myocardial infarction[J]. Tex Heart Inst J,2017,44(3):176-188. doi: 10.14503/THIJ-16-5768
    [29]
    Han Y,Gong Z,Sun G,et al. Dysbiosis of gut microbiota in patients with acute myocardial infarction[J]. Front Microbiol,2021,12:680101. doi: 10.3389/fmicb.2021.680101
    [30]
    Vavalle J P,van Diepen S,Clare R M,et al. Renal failure in patients with ST-segment elevation acute myocardial infarction treated with primary percutaneous coronary intervention:Predictors,clinical and angiographic features,and outcomes[J]. Am Heart J,2016,173:57-66. doi: 10.1016/j.ahj.2015.12.001
  • Relative Articles

    [1] Jie FANG, Xuefeng GUANG, Xiaofeng LIN, Hailong DAI, Tongxi ZUO, Qi LAI. The Study on Application Timing of Intra-aortic Balloon Pump in ST-egment- elevation Myocardial Infarction Patients Complicated with Ventricular Septal Rupture. Journal of Kunming Medical University, 2025, 46(5): 1-5.
    [2] Dongyan LIU, Yan LIU, Zhiming REN, Feng WANG, Yong WANG. Analysis of Risk Factors for Chemotherapy Induced Myelosuppression and Construction of Prediction Models for Myelosuppression Based on Logistic Regression Analysis in Cancer Patients. Journal of Kunming Medical University, 2025, 46(): 1-8.
    [3] Yuanzhen WANG, Hongyan WEI, Renhai TIAN, Yongzhen Chen, Danqing XU, Yingyuan ZHANG, Lixian CHANG, Chunyun LIU, Li LIU. Establishment and Evaluation of a Risk Prediction Model for Chronic Liver Failure Complicated by Primary Hepatocellular Carcinoma Before Intervention. Journal of Kunming Medical University, 2025, 46(3): 1-9.
    [4] Jun DENG, Jun WANG, Xi WANG, Change GAO, Xiao CHEN, Mingxia SHI. Prediction Model and Its Value of IrAEs Based on Peripheral Blood Markers. Journal of Kunming Medical University, 2025, 46(): 1-10.
    [5] Xing LIU, Weixian LI, Xiang ZHU, Mengxing LIU, Na LI, Jiawei XIA, Le ZHANG, Yan WU, Shenghao LI. Construction of a Nomogram Model of Tsutsugamushi Disease Complicated with Sepsis Based on Lasso Regression. Journal of Kunming Medical University, 2024, 45(9): 35-41.  doi: 10.12259/j.issn.2095-610X.S20240906
    [6] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [7] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [8] Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy. Journal of Kunming Medical University, 2023, 44(5): 117-124.  doi: 10.12259/j.issn.2095-610X.S20230512
    [9] Linlin XUE, Binghan LI, Chunyun LIU, Weikun LI, Lixian CHANG, Huimin LI, Yanwei QI, Li LIU. Establishment and Evaluation of a Nomogram for Predicting Potential Death in Patients with Hepatitis C Cirrhosis and Sepsis in General Wards. Journal of Kunming Medical University, 2023, 44(6): 113-119.  doi: 10.12259/j.issn.2095-610X.S20230630
    [10] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [11] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [12] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [13] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [14] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [15] Jiang En Yan , Yang Bo Wei , Liu Jian He . . Journal of Kunming Medical University, 2020, 41(08): 100-104.
    [16] Chen Zhi Ju . Application of Whole Course Optimized Nursing in Emergency Treatment of Patients with ST Segment Elevation Myocardial Infarction. Journal of Kunming Medical University,
    [17] Wang Nan . . Journal of Kunming Medical University,
    [18] Li Fu Ping . . Journal of Kunming Medical University,
    [19] Pang Ming Jie . . Journal of Kunming Medical University,
    [20] Liao Qi Wei . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(2)

    1. 武彦,夏加伟,张乐,沈含章,李畏娴,刘幸. 恙虫病继发噬血细胞综合征误诊为布鲁氏菌病1例. 河北医学. 2024(03): 515-518 .
    2. 齐东伟. 布鲁氏菌病流行病学、临床诊断及防治措施. 中国动物保健. 2023(07): 3-4 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 39.0 %FULLTEXT: 39.0 %META: 60.6 %META: 60.6 %PDF: 0.4 %PDF: 0.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 0.1 %其他: 0.1 %China: 4.1 %China: 4.1 %Falkenstein: 0.1 %Falkenstein: 0.1 %上海: 8.6 %上海: 8.6 %东莞: 0.3 %东莞: 0.3 %丽水: 0.0 %丽水: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %保定: 0.0 %保定: 0.0 %保山: 0.0 %保山: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 23.0 %北京: 23.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %南阳: 0.0 %南阳: 0.0 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %大理白族自治州: 0.0 %大理白族自治州: 0.0 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %安那罕: 0.0 %安那罕: 0.0 %宜昌: 0.0 %宜昌: 0.0 %宜春: 0.0 %宜春: 0.0 %宣城: 0.1 %宣城: 0.1 %巴黎: 0.0 %巴黎: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德宏: 0.0 %德宏: 0.0 %成都: 0.0 %成都: 0.0 %扬州: 0.2 %扬州: 0.2 %拉斯维加斯: 0.0 %拉斯维加斯: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 1.0 %昆明: 1.0 %昭通: 0.0 %昭通: 0.0 %晋中: 0.0 %晋中: 0.0 %曲靖: 0.1 %曲靖: 0.1 %杭州: 0.2 %杭州: 0.2 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泰安: 0.0 %泰安: 0.0 %泰州: 0.1 %泰州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.0 %深圳: 0.0 %温州: 0.0 %温州: 0.0 %湖州: 0.3 %湖州: 0.3 %漯河: 0.6 %漯河: 0.6 %牡丹江: 0.1 %牡丹江: 0.1 %玉林: 0.0 %玉林: 0.0 %玉溪: 0.1 %玉溪: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.2 %石家庄: 0.2 %神农架: 0.1 %神农架: 0.1 %红河: 0.0 %红河: 0.0 %芒廷维尤: 2.7 %芒廷维尤: 2.7 %芝加哥: 0.1 %芝加哥: 0.1 %茂名: 0.0 %茂名: 0.0 %衡水: 0.0 %衡水: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 3.1 %西宁: 3.1 %西安: 0.0 %西安: 0.0 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.0 %郑州: 0.0 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %金昌: 0.0 %金昌: 0.0 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %阜阳: 0.0 %阜阳: 0.0 %青岛: 0.0 %青岛: 0.0 %鞍山: 0.0 %鞍山: 0.0 %马赛: 0.0 %马赛: 0.0 %驻马店: 47.5 %驻马店: 47.5 %其他其他ChinaFalkenstein上海东莞丽水乌鲁木齐保定保山兰州北京十堰南京南宁南阳博阿努瓦台州合肥呼和浩特哥伦布嘉兴大理白族自治州天津宁波安那罕宜昌宜春宣城巴黎常州广州张家口德宏成都扬州拉斯维加斯无锡昆明昭通晋中曲靖杭州格兰特县武汉沈阳泰安泰州洛阳深圳温州湖州漯河牡丹江玉林玉溪盐城石家庄神农架红河芒廷维尤芝加哥茂名衡水衢州西宁西安赤峰运城邢台邯郸郑州重庆金华金昌长沙长治阜阳青岛鞍山马赛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (3832) PDF downloads(17) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return