Volume 45 Issue 5
May  2024
Turn off MathJax
Article Contents
Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model[J]. Journal of Kunming Medical University, 2024, 45(5): 73-81. doi: 10.12259/j.issn.2095-610X.S20240511
Citation: Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model[J]. Journal of Kunming Medical University, 2024, 45(5): 73-81. doi: 10.12259/j.issn.2095-610X.S20240511

The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model

doi: 10.12259/j.issn.2095-610X.S20240511
  • Received Date: 2023-09-30
    Available Online: 2024-04-29
  • Publish Date: 2024-05-31
  •   Objective   To explore the related factors of cognitive impairment after the acute ischemic stroke and develop a clinical nomogram model.   Methods  175 patients with the acute ischemic stroke were selected as the study objects, and the cognitive function was assessed using the simple mental State Scale and the Montreal Cognitive Assessment Scale after the admission. There were 81 cases in post-stroke cognitive impairment (PSCI) group and 94 cases in post-stroke no cognitive impairment (PSNCI) group. The baseline data, peripheral blood and brain MRI results of the two groups were collected and the univariate and multivariate analysis were used to explore the influencing factors of the cognitive impairment after the acute ischemic stroke, and the prediction model was constructed based on the nomogram and evaluated.   Results  Multivariate regression analysis showed that several factors, including impaired daily activity, high levels of HCY, larger cerebral infarction volume, and cerebral atrophy, were independent risk factors for early PSCI. On the other hand, education and hemoglobin were identified as the protective factors against PSCI. A nomogram prediction model was created from this data. The ROC curve analysis predicted an area under the curve of 0.830 (95%CI: 0.77-0.89). The calibration curve indicated that the model had the good differentiation and prediction probability, with bias correction tending towards the ideal curve and consistent incidence in actual outcomes. The clinical decision curve showed that the model could provide a better net benefit for clinical use, making it a valuable tool for healthcare professionals.   Conclusion  The development of PSCI may be overlooked in its early stages. A clinical predictive model that considers multiple factors can aid in the early detection of PSCI and identification of high-risk individuals, which is crucial for the effective prevention and treatment.
  • loading
  • [1]
    中国脑卒中防治报告2019 编写组. 中国脑卒中防治报告2019 概要[J]. 中国脑血管病杂志,2020,17(5):272-281.
    [2]
    中国卒中学会血管性认知障碍分会. 卒中后认知障碍管理专家共识2021[J]. 中国卒中杂志,2021,16(4):376-389.
    [3]
    Bejot Y,Daubail B,Giroud M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives[J]. Rev Neurol (Paris),2016,172(1):59-68. doi: 10.1016/j.neurol.2015.07.013
    [4]
    Wang Y J,Li Z X,Gu H Q,et al. China stroke statistics 2019: A report from the national center for healthcare quality management in neurological diseases,China national clinical research center for neurological diseases,the Chinese stroke association,national center for chronic and non-communicable disease control and prevention,Chinese center for disease control and prevention and institute for global neuroscience and stroke collaborations[J]. Stroke Vasc Neurol,2020,5(3):211-239. doi: 10.1136/svn-2020-000457
    [5]
    贾建平,陈生弟. 神经病学[M]. 第8版. 北京: 人民卫生出版社,2018: 231-235.
    [6]
    中国卒中学会卒中后认知障碍研究圆桌会议专家组. 中国卒中后认知障碍防治研究专家共识[J]. 中国卒中杂志,2020,15(2):158-166.
    [7]
    Sun J H,Tan L,Yu J T. Post-stroke cognitive impairment: Epidemiology,mechanisms and management[J]. Ann Transl Med,2014,2(8):80.
    [8]
    Pendlebury S T,Rothwell P M. Prevalence,incidence,and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis[J]. Lancet Neurol,2009,8(11):1006-1018. doi: 10.1016/S1474-4422(09)70236-4
    [9]
    中国医师协会神经内科分会认知障碍专业委员会, 中国血管性认知障碍诊治指南编写组. 2019年中国血管性认知障碍诊治指南[J]. 中华医学杂志,2019,99(35):2737-2744.
    [10]
    中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志,2018,51(9):666-682.
    [11]
    邱晓雪,陈红霞,李世文,等. 卒中后认知障碍的危险因素分析[J]. 中国卒中杂志,2021,16(3):272-277.
    [12]
    Meng X,Wen R,Li X. Values of serum LDL and PCT levels in evaluating the condition and prognosis of acute cerebral infarction[J]. Exp Ther Med,2018,16(4):3065-3069.
    [13]
    曲艳吉,卓琳,詹思延. 中国脑卒中后认知障碍流行病学特征的系统评价[J]. 中华老年心脑血管病杂志,2013,15(12):1294-1301.
    [14]
    Rost N S,Brodtmann A,Pase M P,et al. Post-stroke cognitive impairment and dementia[J]. Circ Res,2022,130(8):1252-1271. doi: 10.1161/CIRCRESAHA.122.319951
    [15]
    Akinyemi R O,Firbank M,Ogbole G I,et al. Medial temporal lobe atrophy,white matter hyperintensities and cognitive impairment among Nigerian African stroke survivors[J]. BMC Res Notes,2015,8(1):625. doi: 10.1186/s13104-015-1552-7
    [16]
    Zhu Y,Zhao S,Fan Z,et al. Evaluation of the mini-mental state examination and the montreal cognitive assessment for predicting post-stroke cognitive impairment during the acute phase in Chinese minor stroke patients[J]. Front Aging Neurosci,2020,12(2020):236.
    [17]
    Boutros C F,Khazaal W,Taliani M,et al. Factors associated with cognitive impairment at 3,6,and 12 months after the first stroke among Lebanese survivors[J]. Brain Behav,2023,13(1):e2837. doi: 10.1002/brb3.2837
    [18]
    Srithumsuk W,Kabayama M,Gondo Y,et al. The importance of stroke as a risk factor of cognitive decline in community dwelling older and oldest peoples: The SONIC study[J]. BMC Geriatr,2020,20(1):24. doi: 10.1186/s12877-020-1423-5
    [19]
    Wolters F J,Zonneveld H I,Licher S,et al. Hemoglobin and anemia in relation to dementia risk and accompanying changes on brain MRI[J]. Neurology,2019,93(9):e917-e926.
    [20]
    Gu Y,Wang F,Gong L,et al. A nomogram incorporating red blood cell indices to predict post-stroke cognitive impairment in the intracerebral hemorrhage population[J]. Front Aging Neurosci,2022,14(2022):985386.
    [21]
    Dlugaj M,Winkler A,Weimar C,et al. Anemia and mild cognitive impairment in the German general population[J]. J Alzheimers Dis,2016,49(4):1031-1042. doi: 10.3233/JAD-150434
    [22]
    张小丽,邢凤梅. 脑卒中患者认知障碍与人口学及临床特征的关系[J]. 中国老年学杂志,2011,31(16):3146-3147.
    [23]
    Galle S A,Deijen J B,Milders M V,et al. The effects of a moderate physical activity intervention on physical fitness and cognition in healthy elderly with low levels of physical activity: A randomized controlled trial[J]. Alzheimers Res Ther,2023,15(1):12. doi: 10.1186/s13195-022-01123-3
    [24]
    Cumming T B,Tyedin K,Churilov L,et al. The effect of physical activity on cognitive function after stroke: A systematic review[J]. Int Psychogeriatr,2012,24(4):557-567. doi: 10.1017/S1041610211001980
    [25]
    Di Raimondo D,Rizzo G,Musiari G,et al. Role of Regular physical activity in neuroprotection against acute ischemia[J]. Int J Mol Sci,2020,21(23):9086.
    [26]
    Gorelick P B,Furie K L,Iadecola C,et al. Defining optimal brain health in adults: A presidential advisory from the American Heart Association/American Stroke Association[J]. Stroke,2017,48(10):e284-e303.
    [27]
    方靖. MRI病灶体积和BDNF在缺血性脑卒中病情及预后评估中的价值[J]. 临床放射学杂志,2016,35(12):1800-1803.
    [28]
    Prodjohardjono A,Vidyanti A N,Susianti N A,et al. Higher level of acute serum VEGF and larger infarct volume are more frequently associated with post-stroke cognitive impairment[J]. PLoS One,2020,15(10):e0239370. doi: 10.1371/journal.pone.0239370
    [29]
    Jaillard A,Grand S,Le Bas J F,et al. Predicting cognitive dysfunctioning in nondemented patients early after stroke[J]. Cerebrovasc Dis,2010,29(5):415-423. doi: 10.1159/000289344
    [30]
    韩燕,印旭阳,曹鑫,等. 脑小血管病头颅磁共振成像特征与认知损害的研究新进展[J]. 中国临床神经科学,2022,30(4):451-459.
    [31]
    Ding M Y,Xu Y,Wang Y Z,et al. Predictors of cognitive impairment after stroke: A prospective stroke cohort study[J]. J Alzheimers Dis,2019,71(4):1139-1151. doi: 10.3233/JAD-190382
    [32]
    Casolla B,Caparros F,Cordonnier C,et al. Biological and imaging predictors of cognitive impairment after stroke: A systematic review[J]. J Neurol,2019,266(11):2593-2604. doi: 10.1007/s00415-018-9089-z
    [33]
    Pendlebury S T,Rothwell P M,Oxford Vascular S. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study[J]. Lancet Neurol,2019,18(3):248-258. doi: 10.1016/S1474-4422(18)30442-3
    [34]
    陆珍辉. H型高血压与脑白质疏松及卒中后认知障碍的关系研究[D],苏州: 苏州大学,2020.
    [35]
    王维维,申致远,李凡,等. 血浆低密度脂蛋白胆固醇和同型半胱氨酸与脑小血管病患者认知功能的相关性研究[J]. 中国脑血管病杂志,2021,18(12):836-842.
    [36]
    Smith A D,Refsum H,Bottiglieri T,et al. Homocysteine and dementia: An international consensus statement[J]. J Alzheimers Dis,2018,62(2):561-570. doi: 10.3233/JAD-171042
  • Relative Articles

    [1] Lan SHEN, Chaoming CHEN, Jianneng DAI, Lunqing PU, Tianrui WANG, Gang MA. The Application Effect and Influencing Factors of Rapid Rehabilitation Techniques Combined with Damage Control Surgical Techniques in Patients with Multiple Injuries. Journal of Kunming Medical University, 2024, 45(5): 103-108.  doi: 10.12259/j.issn.2095-610X.S20240516
    [2] Kun WANG, Jun PU, Dongbo LI, Tao YANG. Efficacy of Microvascular Decompression for Moderate to Severe Hemifacial Spasm and the Influencing Factors of Delayed Resolution. Journal of Kunming Medical University, 2024, 45(10): 50-54.  doi: 10.12259/j.issn.2095-610X.S20241008
    [3] Huijuan ZENG, Bo TIAN, Hongling YUAN, Jie HE, Guanxi LI, Guojia RU, Min XU, Dong ZHAN. Predictive Modeling of Chronic Kidney Disease with Hypertension or Diabetes Based on Machine Learning Algorithms. Journal of Kunming Medical University, 2024, 45(3): 99-105.  doi: 10.12259/j.issn.2095-610X.S20240315
    [4] Yong DONG, Jiao YANG, Shuaizhong CAI, Yan SU, Haiyin YANG, Shiyao YANG, Yuexi ZHU, Qiongyao GUAN. Latent Class Analysis and Influencing Factors of Cognitive Ability Level of Hospice Care Nursing Students. Journal of Kunming Medical University, 2024, 45(1): 179-186.  doi: 10.12259/j.issn.2095-610X.S20240130
    [5] Rui WANG, Cilin HAN, Yuanqing CAO, Xiaoyan YANG. Multi-level Model Analysis of Factors Influencing Physicians' Job Burnout. Journal of Kunming Medical University, 2024, 45(11): 67-72.  doi: 10.12259/j.issn.2095-610X.S20241110
    [6] Tianyun LIU, Kerong CHEN, Wengang ZHOU, Quanyue JI, Kun XU, Xiufang WANG, Hongling SHI, Sheng ZHOU. A Study on Quality of Life and the Influence of Different Positions on Swallowing Function in Patients with Stroke-Induced Dysphagia. Journal of Kunming Medical University, 2024, 45(8): 182-187.  doi: 10.12259/j.issn.2095-610X.S20240826
    [7] Jingyu YANG, Ning XU, Yutao ZHANG, Fengchang HUANG, Yuanming JIANG, Liang YIN. Comparative Study of Multiple Models Based on Baseline T2WI Images for Predicting Pathological Complete Remission of Progressive Rectal Cancer after Neo-adjuvant Chemoradiotherapy. Journal of Kunming Medical University, 2023, 44(5): 117-124.  doi: 10.12259/j.issn.2095-610X.S20230512
    [8] Yao HUANG, Xi LI, Bo YAN, Lei LEI, Zegang YIN, Jin FAN, Peng BAI. Correlation between Internal Carotid Artery Stenosis and Cognitive Impairment. Journal of Kunming Medical University, 2023, 44(1): 70-75.  doi: 10.12259/j.issn.2095-610X.S20230105
    [9] Linlin XUE, Binghan LI, Chunyun LIU, Weikun LI, Lixian CHANG, Huimin LI, Yanwei QI, Li LIU. Establishment and Evaluation of a Nomogram for Predicting Potential Death in Patients with Hepatitis C Cirrhosis and Sepsis in General Wards. Journal of Kunming Medical University, 2023, 44(6): 113-119.  doi: 10.12259/j.issn.2095-610X.S20230630
    [10] Min ZHOU, Zhihui MA, Jiayan LI, Jianhua FAN, Ling LIN, Tingying YU, Huifang ZHANG, Li LIU. Predictive Model of Risk Factors for the Recurrence of Liver Cirrhosis with Pleural Effusion. Journal of Kunming Medical University, 2022, 43(5): 149-154.  doi: 10.12259/j.issn.2095-610X.S20220524
    [11] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [12] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University, 2022, 43(8): 184-190.  doi: 10.12259/j.issn.2095-610X.S20220830
    [13] Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction. Journal of Kunming Medical University, 2022, 43(12): 58-65.  doi: 10.12259/j.issn.2095-610X.S20221212
    [14] Xing LIU, Yuan LIU, Xiang-fang LIU, Jie CHEN, Yong-gang CHEN, Hui SUN, Ling MA. Adverse Reactions Analysis and Prediction Model of Cefoperazone Sodium Sulbactam Sodium. Journal of Kunming Medical University, 2021, 42(6): 139-145.  doi: 10.12259/j.issn.2095-610X.S20210622
    [15] Sheng-hao LI, Jie DING, Qing-qing WANG, Si-qi LIU, Li-juan HUA, Jin-yu DUAN, Bao-li BO, An-rui DU, Guo-ji CHANG, Jun-yi LI. Influencing Factors of Moderate to Severe Liver Injury in Patients with Chronic Hepatitis B and NAFLD. Journal of Kunming Medical University, 2021, 42(7): 77-82.  doi: 10.12259/j.issn.2095-610X.S20210712
    [16] Jing-rong DAI, Jie LI, Xu HE, Yang LI, Yan LI. Risk Factors Analysis and Risk Prediction Model Construction of Depression in Inpatients of Geriatrics Department of a Hospital in Yunnan. Journal of Kunming Medical University, 2021, 42(11): 20-26.  doi: 10.12259/j.issn.2095-610X.S20211104
    [17] Wang Ru Jiao , Zhang Ling , Yang Ji Ying , Zhou Qiang , Sun Feng Qin , Zhang Yu Lin , Huang Wei . . Journal of Kunming Medical University, 2020, 41(01): 68-72.
    [18] Jiang En Yan , Yang Bo Wei , Liu Jian He . . Journal of Kunming Medical University, 2020, 41(08): 100-104.
    [19] Ge A, Xiao-yan LIU, Li LIU, Yu-jia ZHAN, Ting-ting TANG, Jingnan TAO. Family Burden in Elderly Hip Fracture Patients with Cognitive Impairment and Its Influencing Factors. Journal of Kunming Medical University, 2020, 41(12): 168-172.  doi: 10.12259/j.issn.2095-610X.S20201246
    [20] . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (1408) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return