Dan MA, Yajuan ZHANG, Binbin MA, Qiaoning YUE, Jianping LIU. Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening[J]. Journal of Kunming Medical University, 2025, 46(2): 141-150. doi: 10.12259/j.issn.2095-610X.S20250220
Citation: Dan MA, Yajuan ZHANG, Binbin MA, Qiaoning YUE, Jianping LIU. Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening[J]. Journal of Kunming Medical University, 2025, 46(2): 141-150. doi: 10.12259/j.issn.2095-610X.S20250220

Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening

doi: 10.12259/j.issn.2095-610X.S20250220
  • Received Date: 2024-08-20
    Available Online: 2025-01-04
  • Publish Date: 2025-02-18
  •   Objective  To explore common target genes related to aging and osteoporosis using data from public databases and to screen for small molecule compounds with potential therapeutic effects.   Methods  Osteoporosis datasets GSE56814 and GSE56815 were downloaded and merged from the public gene expression database (Gene Expression Omnibus (GEO)) . Senescent genes were selected and merged from the genecard database and the cell age database. Data cleaning and differential gene selection were performed using R software, and a volcano plot was created. Weighted gene co-expression network analysis was performed to screen out key modules and genes, and the machine learning methods were employed to screen target genes. A Venn diagram was drawn using the the Microbioinformatics platform, and cytoscape software was used to visualise protein interactions results. Interaction analysis of differentially encoded proteins was carried out using the STRING database, and prediction of small molecule compounds was carried out using Cmap database. Finally, Receiver operating characteristic (ROC) curves were plotted to find out the most meaningful target genes, followed by the establishment of a logistic regression model and the creation of a nomogram.   Results  A total of 127 differential genes were screened using the limma package. Weighted gene co-expression network analysis was performed on the differential genes and 103 highly expressed genes were screened. Three machine learning methods, lasso regression, support vector machine and random forest model, were used to finally obtain four target genes: FOXO3, HIRA, CBX5 and RAD1. The nomogram and calibration curves showed good predictive results. Five small molecule compounds with potential therapeutic effects were identified using the Cmap database: sakuraflavin (O-methylated isoflavone), XMD-885, kangaroo hyoscyamine, everolimus and XMD-1150.   Conclusion   FOXO3 and HIRA genes have now been confirmed to be the common target genes for aging and osteoporosis, and sakuraflavin has potential therapeutic effects on both conditions.
  • [1]
    Calimport S R G,Bentley B L,Stewart C E,et al. To help aging populations,classify organismal senescence[J]. Science,2019,366(6465):576-578. doi: 10.1126/science.aay7319
    [2]
    陈卫,郭亚隆. 中国的人口负增长与人口老龄化[J]. 北京社会科学,2023(8):101-112.
    [3]
    杜鹏. 中国人口老龄化现状与社会保障体系发展[J]. 社会保障评论,2023,7(2):31-47.
    [4]
    Le Couteur D G,Thillainadesan J. What is an aging-related disease? An epidemiological perspective[J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,2022,77(11):2168-2174. doi: 10.1093/gerona/glac039
    [5]
    Dönertaş H M,Fabian D K,Valenzuela M F,et al. Common genetic associations between age-related diseases[J]. Nat Aging,2021,1(4):400-412. doi: 10.1038/s43587-021-00051-5
    [6]
    Fougère B,Boulanger E,Nourhashémi F,et al. Chronic inflammation: Accelerator of biological aging[J]. J Gerontol A Biol Sci Med Sci,2017,72(9):1218-1225. doi: 10.1093/gerona/glw240
    [7]
    Filippov M A,Tatarnikova O G,Pozdnyakova N V,et al. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: A role of mitochondria targeted catalase and xanthophylls[J]. Neural Regen Res,2021,16(2):223-233. doi: 10.4103/1673-5374.290878
    [8]
    Wang Y,Shen J,Chen Y,et al. PINK1 protects against oxidative stress induced senescence of human nucleus pulposus cells via regulating mitophagy[J]. Biochem Biophys Res Commun,2018,504(2):406-414. doi: 10.1016/j.bbrc.2018.06.031
    [9]
    Tian Y,Hu Y,Hou X,et al. Impacts and mechanisms of PM2.5 on bone[J]. Rev Environ Health,2023,39(4):765-775.
    [10]
    王永炫,李梅,章振林,等. 《原发性骨质疏松症诊疗指南(2022)》要点解读[J]. 协和医学杂志,2023,14(6):1203-1207.
    [11]
    Almeida M,Laurent M R,Dubois V,et al. Estrogens and androgens in skeletal physiology and pathophysiology[J]. Physiol Rev,2017,97(1):135-187. doi: 10.1152/physrev.00033.2015
    [12]
    Ahire JJ,Kumar V,Rohilla A. Understanding osteoporosis: Human bone density,genetic mechanisms,gut microbiota,and future prospects[J]. Probiotics Antimicrob Proteins,2024,16(3):875-883. doi: 10.1007/s12602-023-10185-0
    [13]
    Zhou Z,Lu Y,Wang Y,et al. Let-7c regulates proliferation and osteodifferentiation of human adipose-derived mesenchymal stem cells under oxidative stress by targeting SCD-1[J]. Am J Physiol Cell Physiol,2019,316(1):C57-C69. doi: 10.1152/ajpcell.00211.2018
    [14]
    Li H,Xiao Z,Quarles L D,et al. Osteoporosis: Mechanism,molecular target and current status on drug development[J]. Curr Med Chem,2021,28(8):1489-1507. doi: 10.2174/0929867327666200330142432
    [15]
    Palacios S. Medical treatment of osteoporosis[J]. Climacteric,2022,25(1):43-49. doi: 10.1080/13697137.2021.1951697
    [16]
    Yang T L,Shen H,Liu A,et al. A road map for understanding molecular and genetic determinants of osteoporosis[J]. Nat Rev Endocrinol,2020,16(2):91-103. doi: 10.1038/s41574-019-0282-7
    [17]
    Farr J N,Rowsey J L,Eckhardt B A,et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: Evidence in young adult mice and older humans[J]. J Bone Miner Res,2019,34(8):1407-1418. doi: 10.1002/jbmr.3729
    [18]
    Shen G S,Zhou H B,Zhang H,et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(12):3644-3654. doi: 10.1016/j.bbadis.2018.09.015
    [19]
    Busse B,Djonic D,Milovanovic P,et al. Decrease in the osteocytelacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone[J]. Aging Cell,2010,9(6):1065-1075. doi: 10.1111/j.1474-9726.2010.00633.x
    [20]
    Jilka R L,O'Brien C A. The role of osteocytes in age-related bone loss[J]. Curr Osteoporos Rep,2016,14(1):16-25. doi: 10.1007/s11914-016-0297-0
    [21]
    Lv Y J,Yang Y,Sui B D,et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice[J]. Theranostics,2018,8(9):2387-2406. doi: 10.7150/thno.23620
    [22]
    Tiede-Lewis L M,Dallas S L. Changes in the osteocyte lacunocanalicular network with aging[J]. Bone,2019,122:101-113. doi: 10.1016/j.bone.2019.01.025
    [23]
    Aurora R,Veis D. Does aging activate T-cells to reduce bone mass and quality?[J]. Curr Osteoporos Rep,2022,20(5):326-333. doi: 10.1007/s11914-022-00745-8
    [24]
    De Spiegeleer A,Beckwée D,Bautmans I,et al. Pharmacological interventions to improve muscle mass,muscle strength and physical performance in older people: An umbrella review of systematic reviews and meta-analyses[J]. Drugs Aging,2018,35(8):719-734. doi: 10.1007/s40266-018-0566-y
    [25]
    Choi H S. Why do we need proactive management for fracture prevention in long-term glucocorticoid users?[J]. Endocrinol Metab (Seoul),2020,35(3):549-551. doi: 10.3803/EnM.2020.308
    [26]
    Cortet B,Lucas S,Legroux-Gerot I,et al. Bone disorders associated with diabetes mellitus and its treatments[J]. Joint Bone Spine,2019,86(3):315-320. doi: 10.1016/j.jbspin.2018.08.002
    [27]
    Ashamalla M,Malik,W. S,et al. Investigating the factors that affect osteoporosis in an aging population[J]. The Health & Fitness Journal of Canada,2020,13(2):30-36.
    [28]
    Rubio-Gutierrez J C,Mendez-Hernández P,Guéguen Y,et al. Overview of traditional and environmental factors related to bone health[J]. Environ Sci Pollut Res Int,2022,29(21):31042-31058. doi: 10.1007/s11356-022-19024-1
    [29]
    Javaheri B,Pitsillides A A. Aging and mechanoadaptive responsiveness of bone[J]. Curr Osteoporos Rep,2019,17(6):560-569. doi: 10.1007/s11914-019-00553-7
    [30]
    Khor Y S,Wong P F. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses[J]. Biogerontology,2024,25(1):23-51. doi: 10.1007/s10522-023-10059-6
    [31]
    Xia B,Li Y,Zhou J,et al. Identification of potential pathogenic genes associated with osteoporosis[J]. Bone Joint Res,2017,6(12):640-648. doi: 10.1302/2046-3758.612.BJR-2017-0102.R1
    [32]
    Köksal Karayildirim Ç,Nalbantsoy A,Karabay Yavaşoğlu N Ü. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes[J]. Mol Biol Rep,2021,48(11):7251-7259. doi: 10.1007/s11033-021-06719-w
    [33]
    Kim B,Jo C,Choi H Y,et al. Prunetin relaxed isolated rat aortic rings by blocking calcium channels[J]. Molecules,2018,23(9):2372. doi: 10.3390/molecules23092372
    [34]
    Khan K,Pal S,Yadav M,et al. Prunetin signals via G-protein-coupled receptor,GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration[J]. J Nutr Biochem,2015,26(12):1491-501. doi: 10.1016/j.jnutbio.2015.07.021
    [35]
    Wu J,Chen J,Yu X,et al. The potential pharmacological mechanism of prunetin against osteoporosis: transcriptome analysis,molecular docking,and experimental approaches[J]. Toxicol Mech Methods,2024,34(1):46-56. doi: 10.1080/15376516.2023.2253305
    [36]
    Chandra A, Rajawat J. Skeletal aging and osteoporosis: Mechanisms and therapeutics[J]. Int J Mol Sci,2021,22(7):3553. doi: 10.3390/ijms22073553
    [37]
    Pignolo R J,Law S F,Chandra A. Bone aging,cellular senescence,and osteoporosis[J]. JBMR Plus,2021,5(4):e10488. doi: 10.1002/jbm4.10488
    [38]
    Manolagas S C. From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis[J]. Endocr Rev,2010,31(3):266-300. doi: 10.1210/er.2009-0024
    [39]
    Pietschmann P,Mechtcheriakova D,Meshcheryakova A,et al. Immunology of osteoporosis: A mini-review[J]. Gerontology,2016,62(2):128-137. doi: 10.1159/000431091
  • Relative Articles

    [1] Zhaoyang CHU, Jialing LI, Junwei CHEN, Changzeng FENG, Ming ZHANG, Li LI, Shaohui MA. Whole Genome Analysis of Coxsackievirus A10 in Yunnan Province. Journal of Kunming Medical University, 2025, 46(2): 23-29.  doi: 10.12259/j.issn.2095-610X.S20250204
    [2] Chenrong JIANG, Xuanran ZHOU, Long PU, Yong YUAN. The Efficacy of Two Operative Approaches of Hemiarthroplasty in the Treatmemt of Intertrochanteric Fracture in Elderly Patients. Journal of Kunming Medical University, 2024, 45(1B): 1-6.
    [3] Leijing RAN, Shaohua WANG, Lintong LI, Li GUI. A Meta-analysis of the Effect of Adjuvant Probiotics in Patients with Osteoporosis. Journal of Kunming Medical University, 2024, 45(2): 65-76.  doi: 10.12259/j.issn.2095-610X.S20240209
    [4] Jing-mei LUO, Can-hui LI, Lan LI, Jie LIN, Jin-rong ZHANG, Li-hua ZHANG. Expression and Significance of Plasma miR-1181 in Patients with Type 2 Diabetes Mellitus. Journal of Kunming Medical University, 2021, 42(10): 61-67.  doi: 10.12259/j.issn.2095-610X.S20211019
    [5] Yong LIAO, Yi-yun GUO, Hong-yu ZHOU, Hai-po FENG, Gen-ding CHEN, Shui-qing YANG. Effects of Folic Acid Combined with Alendronate on Bone Metabolism,CCl4 and Fibroblast Growth Factor Levels in Postmenopausal Osteoporosis Patients. Journal of Kunming Medical University, 2021, 42(7): 98-103.  doi: 10.12259/j.issn.2095-610X.S20210716
    [6] Yu-wei JI, Xin ZHAO, Jiang-li LU, Yi YANG, Wei TANG, Jian-lin JIAO. Effect of Osteoking on Bone Density and Bone Biomechanics of Tree Shrews in a Postmenopausal Osteoporotic Fracture Model. Journal of Kunming Medical University, 2020, 41(11): 7-11.  doi: 10.12259/j.issn.2095-610X.S20201103
    [7] Li Na , Fang Hong Li , Deng Li. . Journal of Kunming Medical University, 2019, 40(06): 135-139.
    [8] Jie Chun Lin , Yue Qiao Ning , Teng Zhao Wei . . Journal of Kunming Medical University, 2019, 40(01): 1-5.
    [9] Du Shi Gang , Zhao Ling , Pu Meng Xian , Pan Yi , Du Juan , Ke Ting Yu . . Journal of Kunming Medical University, 2018, 39(12): 43-48.
    [10] Luo Jing Ling , Zhang Zong Shan , Tan Shao Lin , Guo Xiang Hong . Comparison of Internal Fixation and Arthroplasty in the Treatment of Osteoporosis Complicated with Intertrochanteric Fractures in Elderly Patients. Journal of Kunming Medical University, 2017, 38(04): 123-126.
    [11] Liang Da Wei . Different Prostheses in Artificial Hip Replacement for Osteoporotic Femoral Neck Fracture in Elderly Patients. Journal of Kunming Medical University,
    [12] Zhao Zheng Xing . Clinical Efficacy of PFNA Internal Fixation in the Treatment of 40 Osteoporotic Intertrochanteric Fractures. Journal of Kunming Medical University,
    [13] Li Li . Effect of Geraniin on Expression of Wnt3a in BMSC from Osteoporotic Rats. Journal of Kunming Medical University,
    [14] Yang Feng . Establishment of Tree Shrew Osteoporosis Model by Bilateral Ovariectomy. Journal of Kunming Medical University,
    [15] Ke Ting Yu . . Journal of Kunming Medical University,
    [16] Yang Man . . Journal of Kunming Medical University,
    [17] Chen Bo . . Journal of Kunming Medical University,
    [18] Yuan Xiao Feng . . Journal of Kunming Medical University,
    [19] Zhang Xiao Chao . . Journal of Kunming Medical University, 2012, 33(08): 1-1.
    [20] Song Yu Feng . Pathologic Changes of Articular Cartilage in Ovariectomied Rats. Journal of Kunming Medical University,
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-030255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 73.5 %META: 73.5 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.4 %其他: 12.4 %其他: 1.4 %其他: 1.4 %Falkenstein: 1.4 %Falkenstein: 1.4 %Knoxville: 0.8 %Knoxville: 0.8 %San Jose: 0.6 %San Jose: 0.6 %上海: 2.0 %上海: 2.0 %仁川广域: 0.4 %仁川广域: 0.4 %包头: 0.2 %包头: 0.2 %北京: 0.8 %北京: 0.8 %十堰: 1.4 %十堰: 1.4 %华盛顿州: 0.2 %华盛顿州: 0.2 %南京: 0.4 %南京: 0.4 %南宁: 0.2 %南宁: 0.2 %南通: 0.4 %南通: 0.4 %厦门: 0.4 %厦门: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.8 %哥伦布: 0.8 %嘉兴: 1.0 %嘉兴: 1.0 %墨西哥城: 0.2 %墨西哥城: 0.2 %天津: 2.4 %天津: 2.4 %太原: 0.2 %太原: 0.2 %宁波: 0.2 %宁波: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 1.0 %宣城: 1.0 %常州: 1.2 %常州: 1.2 %平顶山: 0.4 %平顶山: 0.4 %广州: 1.4 %广州: 1.4 %张家口: 5.1 %张家口: 5.1 %张家界: 0.2 %张家界: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 2.7 %扬州: 2.7 %昆明: 2.5 %昆明: 2.5 %杭州: 2.2 %杭州: 2.2 %武汉: 1.8 %武汉: 1.8 %江门: 0.2 %江门: 0.2 %沈阳: 0.2 %沈阳: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 2.5 %温州: 2.5 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.4 %湘潭: 0.4 %漯河: 12.7 %漯河: 12.7 %玉溪: 4.9 %玉溪: 4.9 %白山: 0.2 %白山: 0.2 %百色: 0.2 %百色: 0.2 %盐城: 0.2 %盐城: 0.2 %石家庄: 1.4 %石家庄: 1.4 %芒廷维尤: 9.4 %芒廷维尤: 9.4 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.8 %衡阳: 0.8 %襄阳: 0.6 %襄阳: 0.6 %西宁: 9.2 %西宁: 9.2 %西安: 1.0 %西安: 1.0 %诺沃克: 0.8 %诺沃克: 0.8 %赣州: 0.2 %赣州: 0.2 %运城: 0.2 %运城: 0.2 %邯郸: 1.2 %邯郸: 1.2 %郑州: 1.6 %郑州: 1.6 %重庆: 1.4 %重庆: 1.4 %长沙: 1.4 %长沙: 1.4 %青岛: 0.6 %青岛: 0.6 %马鞍山: 0.4 %马鞍山: 0.4 %其他其他FalkensteinKnoxvilleSan Jose上海仁川广域包头北京十堰华盛顿州南京南宁南通厦门哈尔滨哥伦布嘉兴墨西哥城天津太原宁波安康宣城常州平顶山广州张家口张家界成都扬州昆明杭州武汉江门沈阳淄博深圳温州湖州湘潭漯河玉溪白山百色盐城石家庄芒廷维尤芝加哥衡阳襄阳西宁西安诺沃克赣州运城邯郸郑州重庆长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (373) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return