Volume 46 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Zhiping HAN, Jing CHEN, Tao MA, Shaolan WANG, Jiandong LÜ. Correlation of Serum miR-21 and miR-23a Levels with Cognitive Function and Inflammatory Response in Patients with Parkinson’ s Disease[J]. Journal of Kunming Medical University, 2025, 46(11): 116-121. doi: 10.12259/j.issn.2095-610X.S20251115
Citation: Zhiping HAN, Jing CHEN, Tao MA, Shaolan WANG, Jiandong LÜ. Correlation of Serum miR-21 and miR-23a Levels with Cognitive Function and Inflammatory Response in Patients with Parkinson’ s Disease[J]. Journal of Kunming Medical University, 2025, 46(11): 116-121. doi: 10.12259/j.issn.2095-610X.S20251115

Correlation of Serum miR-21 and miR-23a Levels with Cognitive Function and Inflammatory Response in Patients with Parkinson’ s Disease

doi: 10.12259/j.issn.2095-610X.S20251115
  • Received Date: 2025-07-31
    Available Online: 2025-10-22
  • Publish Date: 2025-11-25
  •   Objective  To investigate the expression levels of serum microRNA-21 (miR-21) and microRNA-23a (miR-23a) in patients with Parkinson’ s disease (PD) and their correlations with cognitive function and inflammatory responses.   Methods  A total of 120 PD patients admitted to the Second Affiliated Hospital of Hebei North University between December 2019 and January 2022 were enrolled, along with 115 healthy controls from the same period. Serum miR-21 and miR-23a levels were measured by quantitative real-time PCR, while serum levels of IL-6, CRP, and TNF-α were determined by ELISA. According to Mini-Mental State Examination (MMSE) scores, PD patients were classified into a cognitive impairment group (MMSE < 26, n = 72) and a normal cognition group (MMSE ≥ 26, n = 48). General characteristics in clinical and biochemical indicators levels were compared between the two groups. Spearman correlation analysis was used to assess the relationships of miRNAs and MMSE scores. Multivariate logistic regression analysis was employed to identify risk factors for cognitive impairment. The predictive value of miR-21 and miR-23a was evaluated using Receiver Operating Characteristic (ROC) curve analysis.  Results  Serum miR-21, miR-23a, IL-6, CRP, and TNF-α levels were significantly higher in the PD group than in the control group (P < 0.01). The cognitive impairment group showed higher levels of miR-21, miR-23a, and inflammatory factor than the cognitively normal group (P < 0.01). Correlation analysis revealed that miR-21 and miR-23a levels were negatively correlated with MMSE scores (r = -0.472, -0.514; P < 0.001) and positively correlated with IL-6, CRP, and TNF-α (P < 0.001). Multivariate Logistic regression analysis revealed that high expression of miR-21, miR-23a, and a higher UPDRS score, were independent risk factors for cognitive impairment in PD patients (P < 0.05). Combined detection of miR-21 and miR-23a showed higher predictive accuracy for cognitive impairment than either marker alone (P < 0.05).   Conclusion  Serum expression levels of miR-21 and miR-23a was upregulated in PD patients, which were associated with cognitive function and inflammatory response. Combined detection shows good predictive value for cognitive impairment..
  • loading
  • [1]
    Reddy A P, Ravichandran J, Carkaci-Salli N. Neural regeneration therapies for Alzheimer’ s and Parkinson’ s disease-related disorders[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4): 165506. doi: 10.1016/j.bbadis.2019.06.020
    [2]
    Vijiaratnam N, Simuni T, Bandmann O, et al. Progress towards therapies for disease modification in Parkinson’ s disease[J]. Lancet Neurol, 2021, 20(7): 559-572. doi: 10.1016/S1474-4422(21)00061-2
    [3]
    Jurado-Coronel J C, Cabezas R, Ávila Rodríguez M F, et al. Sex differences in Parkinson’ s disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics[J]. Front Neuroendocrinol, 2018, 50: 18-30. doi: 10.1016/j.yfrne.2017.09.002
    [4]
    Fan T S, Liu S C, Wu R M. Alpha-synuclein and cognitive decline in parkinson disease[J]. Life (Basel), 2021, 11(11): 1239. doi: 10.3390/life11111239
    [5]
    Li W W, Fan D Y, Shen Y Y, et al. Association of the polygenic risk score with the incidence risk of Parkinson’ s disease and cerebrospinal fluid α-synuclein in a Chinese cohort[J]. Neurotox Res, 2019, 36(3): 515-522. doi: 10.1007/s12640-019-00066-2
    [6]
    Zhang P, Rasheed M, Liang J, et al. Emerging potential of exosomal non-coding RNA in Parkinson’ s disease: A review[J]. Front Aging Neurosci, 2022, 14: 819836. doi: 10.3389/fnagi.2022.819836
    [7]
    He M, Zhang H N, Tang Z C, et al. Diagnostic and therapeutic potential of exosomal microRNAs for neurodegenerative diseases[J]. Neural Plast, 2021, 2021: 8884642.
    [8]
    Bai X, Bian Z. microRNA-21 is a versatile regulator and potential treatment target in central nervous system disorders[J]. Front Mol Neurosci, 2022, 15: 842288. doi: 10.3389/fnmol.2022.842288
    [9]
    中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍专业. 中国帕金森病的诊断标准(2016版)[J]. 中华神经科杂志, 2016, 49(4): 268-271.
    [10]
    Galea M, Woodward M. Mini-mental state examination (MMSE)[J]. Aust J Physiother, 2005, 51(3): 198. doi: 10.1016/S0004-9514(05)70034-9
    [11]
    Postuma R B, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease[J]. Mov Disord, 2015, 30(12): 1591-1601.
    [12]
    Kashihara K, Kitayama M. Time taken for and causes of a decline to hoehn and yahr stage 5 in patients with Parkinson’ s disease[J]. Intern Med, 2023, 62(5): 711-716. doi: 10.2169/internalmedicine.8922-21
    [13]
    Tansey M G, Wallings R L, Houser M C, et al. Inflammation and immune dysfunction in parkinson disease[J]. Nat Rev Immunol, 2022, 22(11): 657-673. doi: 10.1038/s41577-022-00684-6
    [14]
    Mao H, Ding L. Downregulation of miR-21 suppresses 1-methyl-4-phenylpyridinium-induced neuronal damage in MES23.5 cells[J]. Exp Ther Med, 2019, 18(4): 2467-2474.
    [15]
    Zhao L, Wang Z. microRNAs: Game changers in the regulation of α-synuclein in Parkinson’ s disease[J]. Parkinsons Dis, 2019, 2019: 1743183.
    [16]
    Zhu X, Yao Y, Liu Y, et al. Regulation of ADAM10 by microRNA-23a contributes to epileptogenesis in pilocarpine-induced status epilepticus mice[J]. Front Cell Neurosci, 2019, 13: 180.
    [17]
    Nie C, Sun Y, Zhen H, et al. Differential expression of plasma exo-miRNA in neurodegenerative diseases by next-generation sequencing[J]. Front Neurosci, 2020, 14: 438. doi: 10.3389/fnins.2020.00438
    [18]
    Barbagallo C, Mostile G, Baglieri G, et al. Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases[J]. Cell Mol Neurobiol, 2020, 40(4): 531-546. doi: 10.1007/s10571-019-00751-y
  • Relative Articles

    [1] Yanping LI, Efty Fariha Tasnim, Zhixing LU, Lingying ZHU. The Role of APOE4 in Regulating LRP1 on Aβ25-35-Induced Oxidative Stress and Inflammatory Response in Astrocytes. Journal of Kunming Medical University, 2025, 46(11): 18-25.  doi: 10.12259/j.issn.2095-610X.S20251103
    [2] Zhiyong LI, Zhenggang CHEN, Jun PENG, Dazhong LIANG. miR-16-5p Promotes Inflammation and Apoptosis in Oxygen-Glucose Deprivation Microglia Model by Mediating GPR30 Expression. Journal of Kunming Medical University, 2025, 46(10): 23-31.  doi: 10.12259/j.issn.2095-610X.S20251003
    [3] Xiaojuan ZHOU, Libin YANG, Peng YANG, Hao GONG, Xu YANG. Impact of Minimally Invasive Extracorporeal Circulation on Systemic Inflammatory Response and Transfusion Requirements after Coronary Artery Bypass Grafting. Journal of Kunming Medical University, 2025, 46(3): 58-65.  doi: 10.12259/j.issn.2095-610X.S20250310
    [4] Li LUO, Yue SUN, Yuxue WANG, Yongping LU. Real-time Shear Wave Elastography in Evaluating Changes in Muscle and Tendon Tone of the Quadriceps in Parkinson's Disease Patients. Journal of Kunming Medical University, 2025, 46(1): 99-104.  doi: 10.12259/j.issn.2095-610X.S20250113
    [5] Hui LIU, Guoji YAN, Jia WU, Dan WANG, YANGYanbin XI, Shanshan LI. Effects and Mechanisms of Xueshuantong on the Cognitive Function and Abnormal Neural Excitability in Mice with Alzheimer’ s Disease. Journal of Kunming Medical University, 2024, 45(2): 23-31.  doi: 10.12259/j.issn.2095-610X.S20240204
    [6] Yaling ZHAO, Kun WU, Kai WANG, Rong HUANG, Genya HE, Yuhui NA, Miao HE, Zhenbo DING, Caiying ZHANG. Influence of Intrauterine Hyperglycemia Environment on Peripheral Inflammatory Response in Offspring of Gestational Diabetes Mellitus. Journal of Kunming Medical University, 2023, 44(11): 70-75.  doi: 10.12259/j.issn.2095-610X.S20231110
    [7] Xiaoying LIN, Yan TAN, Lei YANG. Effect of Dual-task Training on Mobility Function in Patients with Parkinson’s Disease. Journal of Kunming Medical University, 2023, 44(1): 91-96.  doi: 10.12259/j.issn.2095-610X.S20230110
    [8] Mengshu YANG, Xiaoyun KONG, Huan LI, Yanwei ZOU, Yihao WANG, Ci DONG. Clinical Study on the Effect of Cognitive Behavioral Therapy for Insomnia on Patients with Parkinson’s Disease with Insomnia. Journal of Kunming Medical University, 2023, 44(8): 117-122.  doi: 10.12259/j.issn.2095-610X.S20230806
    [9] Li-jia PENG, Yuan YANG, Ran GUO, Li XIONG, Jun-jie LI, Jian-lin SHAO, Wei-jun ZENG. Effect of Dexmedetomidine Combined with Nalbuphine in Meningioma Surgery on Postoperative Cognitive Function. Journal of Kunming Medical University, 2021, 42(3): 18-22.  doi: 10.12259/j.issn.2095-610X.S20210306
    [10] Jun-jie LI, Hai-yan JIANG, Wen-ya BAI, Si-ying HUO, Zhi-sheng SUN, Jian-lin SHAO. Effects of Silencing RND3 Expression on the Inflammatory Response and Apoptosis of Hippocampal Neurons Injured by Oxygen Glucose Deprivation/Reoxygenation. Journal of Kunming Medical University, 2021, 42(10): 14-21.  doi: 10.12259/j.issn.2095-610X.S20211012
    [11] Li-yuan AN, Bing LI, Gang SU. Effects of Different Doses of Ulinastatinon Postoperative Cognitive Function and HMGB1 in Elderly Patients. Journal of Kunming Medical University, 2021, 42(7): 121-125.  doi: 10.12259/j.issn.2095-610X.S20210720
    [12] Yi-sheng QIAO, Xiao-xiang CHEN, Jiao-tian XU, Wei WANG, Chao ZHANG, Xiao-bin SONG, Zhi-yong YANG, Xing-li DENG. Transplantation of Nurr1 Gene-modified Embryo Midbrain Neural Stem Cells for Treatment of Parkinson’s Rats. Journal of Kunming Medical University, 2021, 42(): 1-6.  doi: 10.12259/j.issn.2095-610X.S20210919
    [13] Yi-sheng QIAO, Xiao-xiang CHEN, Jiao-tian XU, Wei WANG, Chao ZHANG, Xiao-bin SONG, Zhi-yong YANG, Xing-li DENG. Transplantation of Nurr1 Gene-modified Embryo Midbrain Neural Stem Cells for Treatment in Parkinson’ s Disease. Journal of Kunming Medical University, 2021, 42(8): 1-6.  doi: 10.12259/j.issn.2095-610X.S20210801
    [14] Li Yu Bin , Geng Xin , Qi Ren Li , Li Jing Hui , Jiang Hong Gao , Yin Lei , Liu An Xiong , Li Yu Shan , Tang Jia , Yu Hua Lin . . Journal of Kunming Medical University, 2018, 39(09): 47-51.
    [15] Huang Wei , Dai Ping , Yin Yan , Zhang Ling , Jia Fan , Guo Ling , Li Jing Tao . . Journal of Kunming Medical University, 2017, 38(05): 129-132.
    [16] Li Jin Lu . Effects of Propofol on Cognitive Function and BDNF Expression in Rats with Traumatic Brain Injury. Journal of Kunming Medical University,
    [17] He Yin . . Journal of Kunming Medical University,
    [18] Huang Wei . . Journal of Kunming Medical University,
    [19] Ao Lei . . Journal of Kunming Medical University,
    [20] Wang Dan . Cognitive Function and Influencing Factors in Patients with Status Epilepticus. Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (97) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return