Volume 46 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Qiqi PEI, Qian CHEN, Hanying WANG, Li TIAN, Guizhu FENG. Research Status and Clinical Application Progress of Peptide Drugs[J]. Journal of Kunming Medical University, 2025, 46(11): 148-159. doi: 10.12259/j.issn.2095-610X.S20251119
Citation: Qiqi PEI, Qian CHEN, Hanying WANG, Li TIAN, Guizhu FENG. Research Status and Clinical Application Progress of Peptide Drugs[J]. Journal of Kunming Medical University, 2025, 46(11): 148-159. doi: 10.12259/j.issn.2095-610X.S20251119

Research Status and Clinical Application Progress of Peptide Drugs

doi: 10.12259/j.issn.2095-610X.S20251119
  • Received Date: 2025-10-15
    Available Online: 2025-11-06
  • Publish Date: 2025-11-25
  • With the increasing difficulty of traditional chemical drug research and development, peptide drugs have gradually become a hot spot in drug research and development due to their advantages of high specificity, significant efficacy, easy metabolism and low toxicity. This review systematically expounds the physicochemical properties, main advantages and limitations of peptide drugs, and summarizes the currently common strategies for structural modification and delivery. It focuses on the application and target of approved peptide drugs in various diseases such as diabetes, cancer, bacterial and viral infections, multiple sclerosis, and osteoporosis. Furthermore, the research analyzes the challenges in the research and development of peptide drugs, including poor in vivo stability, low bioavailability, and limited routes of administration. It also discusses the prospects of new technologies based on molecular modification, nanodelivery systems, and computer-aided design. In summary, peptide drugs have shown unique advantages in multi-field therapy, but they still need to break through bottlenecks in preparation, delivery and drug resistance to provide new ideas and directions for future precision therapy.
  • loading
  • [1]
    Ganesh A N, Heusser C, Garad S, et al. Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies[J]. Med Drug Discov, 2021, 9: 100079. doi: 10.1016/j.medidd.2020.100079
    [2]
    Jacobs P G, Levy C J, Brown S A, et al. Research gaps, challenges, and opportunities in automated insulin delivery systems[J]. J Diabetes Sci Technol, 2025, 19(4): 937-949. doi: 10.1177/19322968251338754
    [3]
    Chandarana C, Juwarwala I, Shetty S, et al. Peptide drugs: Current status and it’ s applications in the treatment of various diseases[J]. Curr Drug Res Rev, 2024, 16(3): 381-394. doi: 10.2174/0125899775295960240406073630
    [4]
    窦树珍, 周治寰, 邹慧, 等. 多肽药物研发和市场格局分析与展望[J]. 中国生物工程杂志, 2024, 44(11): 110-122. doi: 10.13523/j.cb.2404013
    [5]
    Lau J L, Dunn M K. Therapeutic peptides: Historical perspectives, current development trends, and future directions[J]. Bioorg Med Chem, 2018, 26(10): 2700-2707. doi: 10.1016/j.bmc.2017.06.052
    [6]
    Huang W, Wang Y, Wang X, et al. Research progress on bioactive peptides in the treatment of oral diseases[J]. Zhong Nan da Xue Xue Bao Yi Xue Ban, 2025, 50(5): 907-912.
    [7]
    Hill T A, Shepherd N E, Diness F, et al. Constraining cyclic peptides to mimic protein structure motifs[J]. Angew Chem Int Ed, 2014, 53(48): 13020-13041. doi: 10.1002/anie.201401058
    [8]
    Jülke E M, Beck-Sickinger A G. Peptide therapeutics: Current status and future opportunity with focus on nose-to-brain delivery[J]. Peptides, 2025, 188: 171404. doi: 10.1016/j.peptides.2025.171404
    [9]
    Wu Z C, Isley N A, Boger D L. N-terminus alkylation of vancomycin: Ligand binding affinity, antimicrobial activity, and site-specific nature of quaternary trimethylammonium salt modification[J]. ACS Infect Dis, 2018, 4(10): 1468-1474. doi: 10.1021/acsinfecdis.8b00152
    [10]
    Sharma K K, Sharma K, Kudwal A, et al. Peptide-heterocycle conjugates as antifungals against cryptococcosis[J]. Asian J Org Chem, 2022, 11(7): e202200196. doi: 10.1002/ajoc.202200196
    [11]
    Sharma K K, Cassell R J, Meqbil Y J, et al. Modulating β-arrestin 2 recruitment at the δ- and μ-opioid receptors using peptidomimetic ligands[J]. RSC Med Chem, 2021, 12(11): 1958-1967. doi: 10.1039/D1MD00025J
    [12]
    Lenci E, Trabocchi A. Peptidomimetic toolbox for drug discovery[J]. Chem Soc Rev, 2020, 49(11): 3262-3277. doi: 10.1039/D0CS00102C
    [13]
    Yang J, Wang C, Yao C, et al. Site-specific incorporation of multiple thioamide substitutions into a peptide backbone via solid phase peptide synthesis[J]. J Org Chem, 2020, 85(3): 1484-1494. doi: 10.1021/acs.joc.9b02486
    [14]
    Sharma K, Sharma K K, Sharma A, et al. Peptide-based drug discovery: Current status and recent advances[J]. Drug Discov Today, 2023, 28(2): 103464. doi: 10.1016/j.drudis.2022.103464
    [15]
    Jain K K. An overview of drug delivery systems[J]. Methods Mol Biol, 2020, 2059: 1-54.
    [16]
    Boyer T L, Chao O, Hakim B, et al. Cartilage targeting cationic peptide carriers display deep cartilage penetration and retention in a rabbit model of post-traumatic osteoarthritis[J]. Osteoarthr Cartil, 2025, 33(6): 721-734. doi: 10.1016/j.joca.2025.04.001
    [17]
    Sánchez-López E, Gómara M J, Haro I. Nanotechnology-based platforms for vaginal delivery of peptide microbicides[J]. Curr Med Chem, 2021, 28(22): 4356-4379. doi: 10.2174/0929867328666201209095753
    [18]
    Jain A, Jain A, Gulbake A, et al. Peptide and protein delivery using new drug delivery systems[J]. Crit Rev Ther Drug Carrier Syst, 2013, 30(4): 293-329. doi: 10.1615/CritRevTherDrugCarrierSyst.2013006955
    [19]
    McLean B A, Wong C K, Campbell J E, et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation[J]. Endocr Rev, 2021, 42(2): 101-132. doi: 10.1210/endrev/bnaa032
    [20]
    Shahriar S M S, An J M, Hasan M N, et al. Plasmid DNA nanoparticles for nonviral oral gene therapy[J]. Nano Lett, 2021, 21(11): 4666-4675. doi: 10.1021/acs.nanolett.1c00832
    [21]
    Prabhakar S, Veerabhadraswamy P, Gandasi N R. Role of the extracellular matrix in amylin aggregation: Opportunities for improved therapy in type 2 diabetes mellitus[J]. J Biosci, 2025, 50: 68. doi: 10.1007/s12038-025-00554-y
    [22]
    Riddle M C, Nahra R, Han J, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: A randomized, two-way crossover study[J]. Diabetes Care, 2018, 41(11): 2346-2352. doi: 10.2337/dc18-1091
    [23]
    Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide[J]. J Med Chem, 2015, 58(18): 7370-7380. doi: 10.1021/acs.jmedchem.5b00726
    [24]
    Fu S, Xu X, Ma Y, et al. RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy[J]. J Drug Target, 2019, 27(1): 1-11. doi: 10.1080/1061186X.2018.1455841
    [25]
    di Polidoro A C, Cafarchio A, Vecchione D, et al. Revealing angiopep-2/LRP1 molecular interaction for optimal delivery to glioblastoma (GBM)[J]. Molecules, 2022, 27(19): 6696. doi: 10.3390/molecules27196696
    [26]
    Rahbar A, Hossain M S, Giver C R, et al. Intermittent sargramostim administration expands proliferating Naïve T cells, tregs, HLA-DR+ PD-L1+ monocytes and myeloid-derived suppressor cells: Results from a randomized placebo-controlled clinical trial of GM-CSF in patients with peripheral artery disease[J]. Blood, 2023, 142(Supplement 1): 5355.
    [27]
    Meyer C, Sims A H, Morgan K, et al. Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation[J]. Endocr Relat Cancer, 2013, 20(1): 123-136.
    [28]
    Al Musaimi O. Peptide therapeutics: Unveiling the potential against cancer-a journey through 1989[J]. Cancers (Basel), 2024, 16(5): 1032. doi: 10.3390/cancers16051032
    [29]
    Bandow J E, Metzler-Nolte N. New ways of killing the beast: Prospects for inorganic-organic hybrid nanomaterials as antibacterial agents[J]. Chembiochem, 2009, 10(18): 2847-2850. doi: 10.1002/cbic.200900628
    [30]
    Flint A J, Davis A P. Vancomycin mimicry: Towards new supramolecular antibiotics[J]. Org Biomol Chem, 2022, 20(39): 7694-7712. doi: 10.1039/D2OB01381A
    [31]
    Grein F, Müller A, Scherer K M, et al. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids[J]. Nat Commun, 2020, 11: 1455. doi: 10.1038/s41467-020-15257-1
    [32]
    Heidary M, Khosravi A D, Khoshnood S, et al. Daptomycin[J]. J Antimicrob Chemother, 2018, 73(1): 1-11. doi: 10.1093/jac/dkx349
    [33]
    Bialvaei A Z, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance[J]. Curr Med Res Opin, 2015, 31(4): 707-721. doi: 10.1185/03007995.2015.1018989
    [34]
    Xu W, Pu J, Su S, et al. Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41[J]. AIDS, 2019, 33(10): 1545-1555. doi: 10.1097/QAD.0000000000002208
    [35]
    Figueira T N, Domingues M M, Illien F, et al. Enfuvirtide-protoporphyrin IX dual-loaded liposomes: in vitro evidence of synergy against HIV-1 entry into cells[J]. ACS Infect Dis, 2020, 6(2): 224-236. doi: 10.1021/acsinfecdis.9b00285
    [36]
    Yuan R, Wang B, Lu W, et al. A distinct region in erythropoietin that induces immuno/inflammatory modulation and tissue protection[J]. Neurotherapeutics, 2015, 12(4): 850-861. doi: 10.1007/s13311-015-0379-1
    [37]
    Soares de Souza A, Rudin S, Yu D, et al. Treatment with ATX-MS-1467 persistently triggers IL-10, but not pro-inflammatory cytokine release and induces a population of lag3+CD4+ cells in a humanized HLA/TCR mouse model (P4.002)[J]. Neurology, 2015, 84(14_supplement): P4.002. doi: 10.1212/WNL.84.14_supplement.P4.002
    [38]
    Gaindh D, Choi Y B, Marchese M, et al. Prolonged beneficial effect of brief erythropoietin peptide JM4 therapy on chronic relapsing EAE[J]. Neurotherapeutics, 2021, 18(1): 401-411. doi: 10.1007/s13311-020-00923-5
    [39]
    Charles T, Moss D L, Bhat P, et al. CD4+ T-cell epitope prediction by combined analysis of antigen conformational flexibility and peptide-MHCII binding affinity[J]. Biochemistry, 2022, 61(15): 1585-1599. doi: 10.1021/acs.biochem.2c00237
    [40]
    Ng S L, Leno-Duran E, Samanta D, et al. Genetically modified hematopoietic stem/progenitor cells that produce IL-10-secreting regulatory T cells[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2634-2639. doi: 10.1073/pnas.1811984116
    [41]
    Papaluca T, Gow P. Terlipressin: Current and emerging indications in chronic liver disease[J]. J Gastroenterol Hepatol, 2018, 33(3): 591-598. doi: 10.1111/jgh.14009
    [42]
    Terbah R, Gow P, Sinclair M, et al. Terlipressin for type 1 hepatorenal syndrome[J]. Dig Dis Sci, 2020, 65(8): 2454-2455. doi: 10.1007/s10620-020-06370-8
    [43]
    Jamil K, Pappas S C, Devarakonda K R. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2[J]. J Exp Pharmacol, 2018, 10: 1-7.
    [44]
    Felsenfeld A J, Levine B S. Calcitonin, the forgotten hormone: Does it deserve to be forgotten?[J]. Clin Kidney J, 2015, 8(2): 180-187. doi: 10.1093/ckj/sfv011
    [45]
    Xu J, Wang J, Chen X, et al. The effects of calcitonin gene-related peptide on bone homeostasis and regeneration[J]. Curr Osteoporos Rep, 2020, 18(6): 621-632. doi: 10.1007/s11914-020-00624-0
    [46]
    Casado E, Martínez-Díaz-Guerra G, Caeiro J R. PTH/PTHrP analogues as osteoanabolic treatment in patients with osteoporosis[J]. Med Clin (Barc), 2025, 165(4): 107076. doi: 10.1016/j.medcli.2025.107076
    [47]
    Gurnari C, Awada H, Pagliuca S, et al. Paroxysmal nocturnal hemoglobinuria–related thrombosis in the era of novel therapies: A 2043-patient-year analysis[J]. Blood, 2024, 144(2): 145-155. doi: 10.1182/blood.2024023988
    [48]
    Hillmen P, Szer J, Weitz I, et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria[J]. N Engl J Med, 2021, 384(11): 1028-1037. doi: 10.1056/NEJMoa2029073
    [49]
    Sukhanova V A, Uspenskaya E V, Ainaz S, et al. Development of a comprehensive approach to quality control of dermorphin derivative—Representative of synthetic opioid peptides with non-narcotic type of analgesia[J]. Sci Pharm, 2025, 93(1): 3.
    [50]
    Miljanich G P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain[J]. Curr Med Chem, 2004, 11(23): 3029-3040. doi: 10.2174/0929867043363884
    [51]
    Lin J, Chen S, Butt U D, et al. A comprehensive review on ziconotide[J]. Heliyon, 2024, 10(10): e31105. doi: 10.1016/j.heliyon.2024.e31105
    [52]
    Massironi S, Cavalcoli F, Rausa E, et al. Understanding short bowel syndrome: Current status and future perspectives[J]. Dig Liver Dis, 2020, 52(3): 253-261. doi: 10.1016/j.dld.2019.11.013
    [53]
    Jamshidi Kandjani O, Alizadeh A A, Moosavi-Movahedi A A, et al. Expression, purification and molecular dynamics simulation of extracellular domain of glucagon-like peptide-2 receptor linked to teduglutide[J]. Int J Biol Macromol, 2021, 184: 812-820. doi: 10.1016/j.ijbiomac.2021.06.141
    [54]
    Schmid H. Peginesatide for the treatment of renal disease-induced Anemia[J]. Expert Opin Pharmacother, 2013, 14(7): 937-948. doi: 10.1517/14656566.2013.780695
    [55]
    Piehl E, Fernandez-Bustamante A. Lucinactant for the treatment of respiratory distress syndrome in neonates[J]. Drugs Today (Barc), 2012, 48(9): 587-593. doi: 10.1358/dot.2012.48.9.1835160
    [56]
    Zhu K, Meng L, Luo J, et al. Taltirelin induces TH expression by regulating TRHR and RARα in medium spiny neurons[J]. J Transl Med, 2024, 22(1): 1158. doi: 10.1186/s12967-024-06020-x
    [57]
    Shirley M. Zilucoplan: First approval[J]. Drugs, 2024, 84(1): 99-104. doi: 10.1007/s40265-023-01977-3
    [58]
    Wensink D, Wagenmakers M A E M, Langendonk J G. Afamelanotide for prevention of phototoxicity in erythropoietic protoporphyria[J]. Expert Rev Clin Pharmacol, 2021, 14(2): 151-160. doi: 10.1080/17512433.2021.1879638
    [59]
    Cho Y M. Glucagon-like peptide-1 therapy for youth with type 2 diabetes[J]. J Diabetes Investig, 2023, 14(3): 362-363. doi: 10.1111/jdi.13953
    [60]
    Tran K L, Park Y I, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes[J]. Am Health Drug Benefits, 2017, 10(4): 178-188.
    [61]
    Mookherjee N, Anderson M A, Haagsman H P, et al. Antimicrobial host defence peptides: Functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5): 311-332. doi: 10.1038/s41573-019-0058-8
    [62]
    Basith S, Manavalan B, Hwan Shin T, et al. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening[J]. Med Res Rev, 2020, 40(4): 1276-1314. doi: 10.1002/med.21658
  • Relative Articles

    [1] Menghuan LI, Li AI, Yongxia LI. Single-cell RNA Sequencing: A New Perspective in the Study of Chronic Obstructive Pulmonary Disease. Journal of Kunming Medical University, 2025, 46(3): 1-6.  doi: 10.12259/j.issn.2095-610X.S20250301
    [2] Xiuhua WANG, Zeran HE, Zhihong LI, Huiling WANG, Hongyan SU. Clinical Application Evaluation and Standard,Reasonable Use of Fat Emulsion,Amino Acids (17) and Glucose (11%) Injection. Journal of Kunming Medical University, 2023, 44(3): 138-142.  doi: 10.12259/j.issn.2095-610X.S20230318
    [3] Rui CUN, Meiling CHEN. Efficacy and Clinical Application of Flunarizine Combined with Ginkgo damo in Treatment of Senile Vertigo. Journal of Kunming Medical University, 2022, 43(7): 116-120.  doi: 10.12259/j.issn.2095-610X.S20220703
    [4] Hong-yan JIANG, Rui-lin ZHANG, Yan CAO, Hai-ying WU, Ping LI. Application Prospect of Mannabidiol in Medicine. Journal of Kunming Medical University, 2021, 42(2): 147-152.  doi: 10.12259/j.issn.2095-610X.S20210208
    [5] Yang Shu Di , Zhong Yu Li , Liu Ling , Tian Xin . . Journal of Kunming Medical University, 2020, 41(05): 1-6.
    [6] Zeng Yi , Yang Min , Liao Yun Juan , He Zhen Kun , Lian Xi Yan . . Journal of Kunming Medical University, 2019, 40(07): 96-99.
    [7] Yang Yue, Tao Jian Ping . . Journal of Kunming Medical University, 2019, 40(12): 135-139.
    [8] Wang Xiu Hua , Yang Zhong Ming , Yang Chao , Zhang Guang Yun , Ren Dong Wei , Wang Xue Chang . Evaluation of the Clinical Application of Antineoplastic Drugs in Lincang People's Hospital. Journal of Kunming Medical University, 2017, 38(07): 88-92.
    [9] Zhou Ying . Clinical Application of the Next-generation Sequencing Technology. Journal of Kunming Medical University,
    [10] Li Jian Gang . . Journal of Kunming Medical University,
    [11] Wang Can Zhi . . Journal of Kunming Medical University,
    [12] Yu Yang . . Journal of Kunming Medical University,
    [13] Li Jian Gang . . Journal of Kunming Medical University,
    [14] Du Xiong . . Journal of Kunming Medical University,
    [15] Zhang Hong Jiang . . Journal of Kunming Medical University,
    [16] Song Chao . . Journal of Kunming Medical University,
    [17] . Clinical Application of Capsule Endoscopy in Gastrointestinal Diseases. Journal of Kunming Medical University,
    [18] . . Journal of Kunming Medical University,
    [19] Zhang Xuan . . Journal of Kunming Medical University,
    [20] Sun Jie . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (240) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return