Volume 45 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Xing LIU, Weixian LI, Xiang ZHU, Mengxing LIU, Na LI, Jiawei XIA, Le ZHANG, Yan WU, Shenghao LI. Construction of a Nomogram Model of Tsutsugamushi Disease Complicated with Sepsis Based on Lasso Regression[J]. Journal of Kunming Medical University, 2024, 45(9): 35-41. doi: 10.12259/j.issn.2095-610X.S20240906
Citation: Xing LIU, Weixian LI, Xiang ZHU, Mengxing LIU, Na LI, Jiawei XIA, Le ZHANG, Yan WU, Shenghao LI. Construction of a Nomogram Model of Tsutsugamushi Disease Complicated with Sepsis Based on Lasso Regression[J]. Journal of Kunming Medical University, 2024, 45(9): 35-41. doi: 10.12259/j.issn.2095-610X.S20240906

Construction of a Nomogram Model of Tsutsugamushi Disease Complicated with Sepsis Based on Lasso Regression

doi: 10.12259/j.issn.2095-610X.S20240906
  • Received Date: 2024-03-22
    Available Online: 2024-06-04
  • Publish Date: 2024-09-25
  •   Objective  To establish a nomogram model for tsutsugamushi disease complicated with sepsis based on Lasso regression, so as to provide a reference for the diagnosis and treatment of tsutsugamushi disease complicated with sepsis.   Methods  We selected patients with scrub typhus patients admitted to Kunming Third People’ s Hospital from June 2012 to December 2023 as the research subjects (n = 235), with scrub typhus patients patients with sepsis as the experimental group (n = 138) and scrub typhus patients patients without sepsis as the control group (n = 97), Lasso regression was used to screen the influencing factors of scrub typhus combined with sepsis, and a nomogram model was constructed through logistic regression. The effectiveness of the model was evaluated using receiver operating characteristic(ROC) curves and calibration curves, and clinical utility analysis was performed using decision curve analysis(DCA).   Results  The results of multivariate analysis through logistic regression showed: that age (OR = 1.039, 95%CI: 1.017~1.061), PLT (OR = 0.995, 95%CI: 0.990~1.000), UA (OR = 1.004, 95%CI: 1.001~1.008) and IgA (OR = 0.680, 95%CI: 0.472~0.979) were independent influencing factors of scrub typhus combined with sepsis. The area under the ROC curve (AUC) was 0.721 (95%CI: 0.656~0.786, P < 0.001), the sensitivity of the model was 69.1%, and the specificity was 63.1%. The calibration curve indicates that the model had good consistency, and the DCA indicated that the model had a high net benefit value.   Conclusion  Patients with scrub typhus are associated with increased age and UA levels and decreased PLT and IgA levels, and have a higher risk of secondary sepsis.
  • loading
  • [1]
    王子文,张林娜,徐猛,等. 肺部感染并发脓毒症患者入院28 d内死亡预测模型的构建[J]. 山东医药,2023,63(3):37-43. doi: 10.3969/j.issn.1002-266X.2023.03.008
    [2]
    李兰娟,任红. 传染病学 [M]. 9版. 北京: 人民卫生出版社,2018: 142-150.
    [3]
    Braun D. A retrospective review of the sepsis definition after publication of sepsis-3[J]. Am J Med,2019,132(3):382-384. doi: 10.1016/j.amjmed.2018.11.003
    [4]
    梁桐, 刘莹, 李幼霞, 等. 恙虫病临床特征及重症危险因素分析[J]. 中国热带医学,2023,23(9):961-965.
    [5]
    Luce-Fedrow A,Lehman M L,Kelly D J,et al. A review of scrub typhus (orientia tsutsugamushi and related organisms): Then,now,and tomorrow[J]. Trop Med Infect Dis,2018,17(1):8-11.
    [6]
    谢晓菲,王高玉,黄艺,等. 中国恙虫病流行及临床研究进展(2010-2020)[J]. 海南医学院学报,2023,29(19):1505-1509.
    [7]
    Lee N,Ip M,Wong B,et al. Risk factors associated with life-threatening rickettsial infections[J]. Am J Trop Med Hyg,2008,78(6):973-978. doi: 10.4269/ajtmh.2008.78.973
    [8]
    Bhargava A,Kaushik R,Kaushik R M,et al. Scrub typhus in uttarakhand & adjoining uttar pradesh: Seasonality,clinical presentations & predictors of mortality[J]. Indian J Med Res,2016,144(6):901-909. doi: 10.4103/ijmr.IJMR_1764_15
    [9]
    Hou N,Li M,He L,et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: A machine learning approach using XGboost[J]. J Transl Med,2020,18(1):462-471. doi: 10.1186/s12967-020-02620-5
    [10]
    Sharma R,Mahajan S K,Singh B,et al. Predictors of severity in scrub typhus[J]. J Assoc Physicians India,2019,67(4):35-38.
    [11]
    Zhang C,Shang X,Yuan Y,et al. Platelet-related parameters as potential biomarkers for the prognosis of sepsis[J]. Exp Ther Med,2023,25(3):133-140. doi: 10.3892/etm.2023.11832
    [12]
    路伟民,杨小涛,朱瑛,等. 儿童恙虫病175例的临床特征及重症恙虫病危险因素[J]. 昆明医科大学学报,2022,43(8):72-80. doi: 10.12259/j.issn.2095-610X.S20220814
    [13]
    Verma S K,Gupta K K,Arya R K,et al. Clinical and biochemical profile of scrub typhus patients at a tertiary care hospital in Northern India[J]. J Family Med Prim Care,2021,10(3):1459-1465. doi: 10.4103/jfmpc.jfmpc_1162_20
    [14]
    Mahajan S K,Sharma R,Singh B. Is hyperuricemia a marker of severity of disease in Scrub typhus[J]. J Assoc Physicians India,2022,69(12):11-12.
    [15]
    王英,李梅,许汪斌,等. 云南省2017至2018年重症恙虫病临床特征分析[J]. 中华危重病急救医学,2019,31(8):1018-1023. doi: 10.3760/cma.j.issn.2095-4352.2019.08.021
    [16]
    文芳,司少魁. 醒脑静注射液联合乌司他丁、连续性肾脏替代治疗对脓毒症合并急性肾损伤患者的疗效、免疫功能及血流动力学的影响[J]. 临床肾脏病杂志,2024,24(1):25-32. doi: 10.3969/j.issn.1671-2390.2024.01.005
    [17]
    Corona A,Richini G,Simoncini S,et al. Treating critically Ⅲpatients experiencing SARS-CoV-2 severe infection with IgM and IgA enriched IgG infusion[J]. Antibiotics (Basel),2021,10(8):930-941. doi: 10.3390/antibiotics10080930
    [18]
    Bhattacharya P K,Murti V S,Jamil M,et al. Clinical profile and determinants of scrub typhus presenting with sepsis based on sepsis-3 criteria[J]. J Vector Borne Dis,2020,57(4):307-313. doi: 10.4103/0972-9062.313963
  • Relative Articles

    [1] Congxin LI, Haidong YUE, Pengxi ZHU, Guangxian HUANG, Lingjie MU, Yanan PENG, Yijie WANG, Yang YANG. Correlation analysis between different vitamin D3 levels and immune inflammatory indicators in elderly patients with sepsis. Journal of Kunming Medical University, 2025, 46(2): 1-8.
    [2] Yanmei JI, Wenjun LI, Qingyun LI, Ni GUO, Ni MENG, Dan ZHOU, Qiuyu LI, Xingfang JIN. The Analysis of Related Factors of Cognitive Impairment after the Acute Ischemic Stroke and Construction of Nomogram Model. Journal of Kunming Medical University, 2024, 45(5): 73-81.  doi: 10.12259/j.issn.2095-610X.S20240511
    [3] Junjie NIU, Wenjuan JI, Zhuaizhuai YU. Correlation between Gut Microbiota,Serum ET,PCT Levels with the Severity and Prognosis of Sepsis. Journal of Kunming Medical University, 2024, 45(4): 140-145.  doi: 10.12259/j.issn.2095-610X.S20240420
    [4] Saiqiong ZHANG, Wuquan LI, Qingjiang CHEN. Clinical Efficacy of Continuous Renal Replacement Therapy in Severe Burn Sepsis. Journal of Kunming Medical University, 2023, 44(11): 94-99.  doi: 10.12259/j.issn.2095-610X.S20231114
    [5] Linlin XUE, Binghan LI, Chunyun LIU, Weikun LI, Lixian CHANG, Huimin LI, Yanwei QI, Li LIU. Establishment and Evaluation of a Nomogram for Predicting Potential Death in Patients with Hepatitis C Cirrhosis and Sepsis in General Wards. Journal of Kunming Medical University, 2023, 44(6): 113-119.  doi: 10.12259/j.issn.2095-610X.S20230630
    [6] Congxin LI, Dapeng ZHANG, Lingjie MU, Jilin YANG, Lihong DONG, Yijie WANG. The Value of HCT-ALB in the Early Diagnosis of Sepsis-associated Encephalopathy. Journal of Kunming Medical University, 2022, 43(9): 24-28.  doi: 10.12259/j.issn.2095-610X.S20220901
    [7] Wenzhuo LI, Li YANG, Jing XIA. Efficacy of Xinmailong Injection on Septic Cardiomyopathy. Journal of Kunming Medical University, 2022, 43(12): 111-116.  doi: 10.12259/j.issn.2095-610X.S20221221
    [8] Hong WANG, Dexing YANG, Qiang WANG, Weiyu ZHOU, Jiefu TANG, Zhenfang WANG, Kai FU, Shengzhe LIU, Rong LIU. Risk Factors Analysis and Prediction Model Establishment of Refeeding Syndrome in ICU Patients with Sepsis. Journal of Kunming Medical University, 2022, 43(11): 44-51.  doi: 10.12259/j.issn.2095-610X.S20221102
    [9] Jiang En Yan , Yang Bo Wei , Liu Jian He . . Journal of Kunming Medical University, 2020, 41(08): 100-104.
    [10] Xu Jian , Wang Zi Yu , Chen Yao Xiang , Mou Bo , Jin Yan , Ma Lei . . Journal of Kunming Medical University, 2019, 40(04): 97-100.
    [11] Liu Ya Ming , Xu Mian , Yan Yue Xin , Zhou Feng Gao , Xu Cheng , Zhao Kun , Jiang Guo Yun , Wu Yu, Liu Rong . . Journal of Kunming Medical University, 2019, 40(06): 16-22.
    [12] Long Jin Ting , Bao Fu Kai , Liu Ai Hua . . Journal of Kunming Medical University, 2019, 40(07): 1-6.
    [13] Teng Yan . Effect of Hemoperfusion on Inflammation Factors in Patients with Sepsis. Journal of Kunming Medical University,
    [14] Wang Jin . . Journal of Kunming Medical University,
    [15] Li Jing . . Journal of Kunming Medical University,
    [16] Xu Ying . . Journal of Kunming Medical University,
    [17] Miao Yu Lan . . Journal of Kunming Medical University,
    [18] Miao Yu Lan . . Journal of Kunming Medical University,
    [19] . Clinical Effect of Xuebijing Injection on Pro/Anti-inflammatory Balance in Sepsis Patients. Journal of Kunming Medical University,
    [20] . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (401) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return