Turn off MathJax
Article Contents
Shan ZHAO, Sai GAO, Tangchun LI, Zhongming ZHAO, Yating Wu, Min ZHENG. Construction and Evaluation of Maternal Mortality Prediction Model in Yunnan Province[J]. Journal of Kunming Medical University.
Citation: Shan ZHAO, Sai GAO, Tangchun LI, Zhongming ZHAO, Yating Wu, Min ZHENG. Construction and Evaluation of Maternal Mortality Prediction Model in Yunnan Province[J]. Journal of Kunming Medical University.

Construction and Evaluation of Maternal Mortality Prediction Model in Yunnan Province

  • Received Date: 2024-10-08
  •   Objective   To construct and evaluate the prediction model of maternal mortality in Yunnan Province, and predict the maternal mortality rate in Yunnan Province from 2024 to 2030.   Methods   Based on the maternal mortality rates in Yunnan Province from 1994 to 2023, a grey prediction model and a autoregressive integrated moving average model were constructed, The models were compared using mean absolute error, mean square error and root mean square error to assess their fitting performance, and the optimal model was used to predict the maternal mortality rate in Yunnan Province from 2024 to 2030.   Resuls   The maternal mortality rate in Yunnan Province showed a continuous decline from 1994 to 2023(χ2 = 50170.0, P < 0.05). The mean absolute error, mean-square error and root mean-square error for the grey prediction model were 2.424, 12.389, 3.519 , respectively, while for the differential autoregressive moving average model, they were 3.966, 27.651, 5.258, respectively. The prediction effect of the grey prediction model is superior to that of the autoregressive integrated moving average model, with a posterior difference ratio C = 0.079 and a low probability error P = 1, indicating a prediction accuracy of level 1. Using the grey prediction model, the maternal mortality rates for Yunnan Province from 2024 to 2030 are 10.05/100 000, 9.16/100 000, 8.34/100 000, 7.59/100 000, 691/100 000, 6.30/100 000 and 5.73/100 000, respectively.   Conclusion   The grey prediction model has a good prediction effect on maternal mortality in Yunnan Province. It is predicted that the maternal mortality rate in Yunnan Province in 2030 can meet the control targets outlined in the “Healthy China 2030 Plan”, the “Outline of Chinese Women's Development (2021—2030)” and the “Yunnan Women's Development Plan (2021—2030).”
  • loading
  • [1]
    尹小兰,何芯芯,杜林,等. RNN、JPR及ARIMA 3种模型预测中国农村孕产妇死亡率的比较[J]. 中华疾病控制杂志,2023,27(11):1308-1313.
    [2]
    Organization W H . Health in 2015: From MDGs to SDGs[J]. 2015.
    [3]
    国务院. 国务院关于印发中国妇女发展纲要和中国儿童发展纲要的通知[EB/OL]. (2021-09-08)[2024-06-26] -https://www.gov.cn/gongbao/content/2021/content_5643262.htm
    [4]
    云南省人民政府. 《云南妇女发展规划(2021—2030年)》[EB/OL](2022-05-31)[2024-06-26] https://www.ynzx.gov.cn/gwfb/264869.jhtml
    [5]
    王嫚,杨伟康. 基于ARIMA模型与GM(1,1)模型的深圳市5岁以下儿童死亡率的预测研究[J]. 现代预防医学,2024,51(3):466-470+506.
    [6]
    刘洁,高茵茵,曲波,等. 应用ARIMA模型预测我国孕产妇死亡率[J]. 中国医科大学学报,2011,40(02):107-108+121.
    [7]
    庞艳蕾. 孕产妇、婴儿及5岁以下儿童死亡率分析与预测[D]. 潍坊: 潍坊医学院,2016.
    [8]
    邵升清,夏桂梅. ARIMA模型与GM(1,1)模型在传染病发病率中的预测效果比较[J]. 宁夏师范学院学报,2021,42(7):13-18.
    [9]
    Yan J M,Li Y B,Zhou P Y. Impact of COVID-19 pandemicon the epidemiology of STDs in China: Based on the GM(1,1) model[J]. BMC Infect Dis,2022,22(1):519. doi: 10.1186/s12879-022-07496-y
    [10]
    Zeng B,Yang Y J,Gou X. Research on physical health early warning based on GM(1,1)[J]. Comput Biol Med,2022,143(1):105256.
    [11]
    Cheng T,Bai Y,Sun X,et al. Epidemiological analysis of varicella in Dalian from 2009 to 2019 and application of three kinds of model in prediction prevalence of varicella[J]. BMC Public Health,2022,22(1):678. doi: 10.1186/s12889-022-12898-3
    [12]
    张悦,郭海强. 1991—2017年我国妇幼保健主要统计指标趋势分析[J]. 中国卫生统计,2019,36(5):642-643.
    [13]
    联合国可持续发展峰会. 变革我们的世界: 2030年可持续发展议程: [EB/OL] (2015-09-27) [2024-06-28] https://www.un.org/zh/conferences/environment/newyork2015
    [14]
    世界卫生组织. 2000年至2020年孕产妇死亡率趋势: 世界卫生组织、儿童基金会、人口基金、世界银行集团和经社部/人口司的估计数[EB/OL] : (2023-02-23) [2024-6-28]. https://www.who.int/publications/i/item/9789240068759
    [15]
    刘昶荣. 我国妇幼健康核心指标达到历史最好水平[N]. 中国青年报,2022-08-23(004).
    [16]
    Samuel,O,Zewotir,T,North,D. Decomposing the urban-rural inequalities in the utilisation of maternal health care services: Evidence from 27 selected countries in Sub-Saharan Africa. Reprod Health. 2021; 18 (1): 216.
    [17]
    陈敦金,贺芳. 中国孕产妇死亡率极大程度降低——对世界的最大贡献[J]. 中国实用妇科与产科杂志,2019,35(10):1076-1080.
    [18]
    苏燕燕,神艳,聂雷,等. 1991—2021年我国孕产妇死亡率变化情况分析[J]. 中国初级卫生保健,2024,38(1):54-58. doi: 10.3969/j.issn.1001-568X.2024.01.0015
    [19]
    王震坤,王子伟,沈霞,等. 1992—2017年中国孕产妇死亡趋势及年龄—时期—队列模型分析[J]. 中华预防医学杂志,2021,55(6):742-746. doi: 10.3760/cma.j.cn112150-20210127-00083
    [20]
    黄翠敏,吴桂花,粘惠瑜,等. 海南省2003—2022年孕产妇死亡率变化趋势及预测分析[J]. 中国热带学,2023,23(11):1164-1168+,1179.
    [21]
    谭晓萍. 云南省实现联合国可持续发展目标中的妇幼保健和生殖健康相关目标研究[D]. 昆明: 昆明医科大学,2019.
    [22]
    张亚慧,张荣,贾素红,等. 灰色预测模型GM(1,1)和残差自回归模型在中国孕产妇死亡率预测中的应用[J]. 中国妇幼保健,2023,38(10):1747-1752.
    [23]
    张彬,张龙秀,王瑞,等. 基于ARIMA和GM(1,1)模型的我国农村MMR、IMR、NMR及U5MR趋势预测[J]. 中国医药科学,2023,13(14):7-10+15.
  • Relative Articles

    [1] Wenxiu XU, Xiaofeng MO, Xiangmin YANG, Silu YANG, Fan WU, Te LI. Application of Logistic Regression and Decision Tree Model in Prediction of Adverse Reactions of Iodinated Contrast Medium. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240911
    [2] Chunyan LIU, Bingqing CHANG, Chao LI, Xin REN, Xiaoqin LIU. The Relationship between T Lymphocyte Subsets and Pathological Characteristics of Acute Myeloid Leukemia and the Value of Predicting Chemotherapy Prognosis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240518
    [3] Lanzhu YAN, Shunyi QIAO, Yanli ZHANG, Erqiang ZHAO, Hu YANG, Jing LIN, Haiyan FU. Changes of Immunoglobulin in TACE Treatment of Hepatocellular Carcinoma and Its Value in Predicting Curative Effect. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20240418
    [4] Xiaoling YANG, Zhen LIU, Yu WANG, Jing WANG. The Predictive Value of sFlt-1,SDC4,and sST2 on the Therapeutic Effect of Children with Purpuric Nephritis. Journal of Kunming Medical University,
    [5] Xiaowei YANG, Yan WANG, Liqiong ZENG, Xuelian JIANG. Efficacy Analysis Combined Prediction of Postpartum Hypertension by 24-hour Urinary Protein,Hematocrit-albumin,and BNP in Patients with Severe Preeclampsia at the End of Pregnancy. Journal of Kunming Medical University,
    [6] Zhengmei ZI, Li HAO, Nan WANG, Guobing CHEN. The Diagnostic Value of Combined Prediction Model for Acute Type A Aortic Dissection Rupture. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230128
    [7] Hao FAN, Xing LIU, Le ZHANG, Weixian LI, Xuejiao WU, Yi HAN, Xiaodie YAO. Applications of Decision Tree Models and Logistic Regression in the Prediction of Active Tuberculosis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230916
    [8] Li CAI, Huaying YANG, Jianhong CHENG, Jia CAO, Na WEI. Changes of Serum Levels of 6-Keto-PGF1α,TGF-α and TXB2 during the Treatment of Peptic Ulcer in Children and Their Influence on Prognosis. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230928
    [9] Qianwen ZHENG, Xiaoyan MA, Jihong LIU, Shanshan GUO, zhuoma ZHISHI. The Analysis between Uterocervical Angles and Cervical Length in Predicting Preterm Labor. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20230515
    [10] Guijun LI, Peng WEN, Lixia HUANG, Lian XIANG. Exploring the Efficacy of Different Mathematical Models with Multi-b Value DWI in Predicting Lymphatic Vascular Invasion of Endometrial Cancer. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220411
    [11] Hao FAN, Xing LIU, Lingjun SHEN, Haiwen LI, Chunhong YU, Jingwei LI. Constructing A Nomogram Prediction Model for Active Pulmonary Tuberculosis Based on AAT and Cytokines. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220816
    [12] Guimei ZHANG, Shu CHEN, Yunhua SONG, Yang WU, Hongyuan ZHOU. Risk Factors of Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Establishment of Risk Prediction Model. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20220830
    [13] Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction. Journal of Kunming Medical University,  doi: 10.12259/j.issn.2095-610X.S20221212
    [14] Jiang En Yan , Yang Bo Wei , Liu Jian He . . Journal of Kunming Medical University,
    [15] Fu Tian , Wang Cai Feng , Zhang XuFeng , Dang Shao Nong . . Journal of Kunming Medical University,
    [16] Xu Jing . . Journal of Kunming Medical University,
    [17] Ai Yi Qin . . Journal of Kunming Medical University,
    [18] Ai Yi Qin . . Journal of Kunming Medical University,
    [19] Hu Wan Qin . . Journal of Kunming Medical University,
    [20] Wan Rong . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return