Characteristics of katG and inhA Gene Mutations in INH-Resistant Mycobacterium Tuberculosis in Yunnan Province
-
摘要:
目的 分析云南省异烟肼耐药结核分枝杆菌katG和inhA基因突变特征。 方法 采用PCR方法对云南省异烟肼耐药结核分枝杆菌进行katG和inhA基因扩增,并将扩增产物进行基因测序后比对分析。 结果 88株异烟肼耐药菌株中,耐药基因与表型药敏结果的符合率为82.95%(73/88),katG和inhA基因突变率分别为75.00%(66/88)和9.09%(8/88)。最为常见的基因突变位点为katG315(67.05%)和inhA-15(7.95%),katG315位点基因突变主要表现为Ser315Thr(59.09%,52/88)。耐多药与单耐异烟肼菌株中katG基因突变比例,差异有统计学意义(χ2 = 4.190,P = 0.041),而inhA基因及katG315、inhA-15位点基因突变比例,差异无统计学意义(P > 0.05)。 结论 云南省异烟肼耐药以katG315和inhA-15基因突变为主,MDR菌株中katG基因突变率高于异烟肼单耐,目前基于基因突变的分子检测技术是检测异烟肼耐药的有效手段。 Abstract:Objective To analyze the characteristics of katG and inhA genetic mutations associated with INH-resistant Mycobacterium tuberculosis in Yunnan Province. Methods The INH-resistant Mycobacterium tuberculosis isolates were collected from drug-resistant monitoring sites in Yunnan Province, and the katG and inhA genes were amplified by PCR and then sequenced. Results Among the 88 MTB strains, the coincidence rate of INH-resistant genotype and phenotype was 82.95% (73/88). 75.00% (66/88) had katG mutations and 9.09% (8/88) had inhA mutations. katG315 (67.05%) and inhA-15 (7.95%) were the top two mutation sites, and a high prevalence of katG Ser315Thr mutations (59.09%, 52/88) was observed. The frequency of the katG mutation was significantly higher in MDR-TB compared to INH mono-resistant isolates (χ2 = 4.190, P = 0.041), while katG315, inhA and inhA-15T mutations did not differ significantly between these two groups (P > 0.05). Conclusion The most common mutation of INH-resistant Mycobacterium tuberculosis in Yunnan Province were katG315 and inhA-15, and katG mutation was higher among MDR isolates compared with INH mono-resistant strains. Molecular diagnostics based on gene mutations was a useful method for rapid detection of INH-resistant Mycobacterium tuberculosis in Yunnan Province. -
Key words:
- Mycobacterium tuberculosis /
- INH /
- Drug resistance /
- katG /
- inhA
-
表 1 88株INH耐药结核分枝杆菌的KatG和inhA基因突变情况
Table 1. Distribution of mutations of katG and inhA gene among 88 inh-resistant TB isolates
基因位点 密码子改变 氨基酸改变 菌株数(株) 构成比(%) katG 315 AGC ACC Ser Thr 50 56.82 AGC AAC Ser Asn 5 5.68 AGC CGC Ser Arg 1 1.14 katG 190 CAG TAG Gln 终止密码子 1 1.14 katG 232 CCG ACG Pro Thr 1 1.14 katG 316 GGC CGC Gly Arg 1 1.14 katG 328 TGG TCG Trp Ser 1 1.14 katG 315+327 AGC ACC Ser Thr 1 1.14 AAA AAG Lys Lys同义突变 katG 315+329 AGC ACC Ser Thr 1 1.14 GAC GTC Asp Val katG 315+334 AGC AAC Ser Asn 1 1.14 GAG GGG Glu Gly katG 232+ 328 CCG GCG Pro Ala 1 1.14 TGG GGG Trp Gly katG基因缺失 - - - - 1 1.14 inhA -15 C T - - 7 7.95 katG314+inhA-34 ACC ATC Thr Ile 1 1.14 C T - - 未检出 - - - - 15 17.05 表 2 不同耐药类型中INH耐药基因突变情况[n(%)]
Table 2. KatG and inhA gene mutations between MDR and INH mono-resistant [n(%)]
耐药类型 菌株数(株) 总的基因突变 katG 其中Ser 315Thr突变 inhA 其中inhA-15突变 MDR 32 28(87.50) 28(87.50) 20(62.50) 1**(3.13) 0(0) INH单耐 56 45(80.36) 38(67.38) 32(57.14) 7(12.50) 7(12.50) χ2 0.735 4.190 0.242 1.180 2.806 P 0.391 0.041※ 0.623 0.277 0.094 **:inhA和katG基因的联合突变;※P < 0.05。 -
[1] World Health Organization. Global tuberculosis report2020[R]. Geneva, Switzerland: WHO, 2020. [2] 李桂莲,万康林. 结核分枝杆菌异烟肼耐药性——一个不容忽视的问题[J]. 中国人兽共患病学报,2019,35(6):475-479. [3] 杨慧娟,陈连勇,茹浩浩,等. 云南省结核分枝杆菌利福平耐药基因rpoB突变特征分析[J]. 中华疾病控制杂志,2018,22(2):147-152. [4] Tomasz Jagielski,Zofia Bakuła,Katarzyna Roeske,et al. Mutation profiling for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates[J]. J Antimicrob Chemother,2015,70(12):3214-3221. [5] Molecular analysis of isoniazid resistance in different genotypes of Mycobacterium tuberculosis isolates from Iran[J]. Microbial Drug Resistance, 2008, 14(4): 273-279. [6] Isakova J,Sovkhozova N,Vinnikov D,et al. Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic[J]. BMC Microbiol,2018,18(1):1-8. [7] 陈珊,刘厚明,单万水. 结核分枝杆菌耐药表型与耐药 基因型相关性研究进展[J]. 中国感染控制杂志,2016,15(11):883-886. [8] Paolo Miotto,YingZhang,Daniela Maria,et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis[J]. Respirology,2018,23(12):1098-1113. doi: 10.1111/resp.13393 [9] Zhao L L,Chen Y,Chen Z N,et al. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hunan,China[J]. Antimicrobial Agents and Chemotherapy,2014,58(6):3475-3480. [10] Thomas C Victor , Paul D van Helden,Robin Warren . Prediction of drug resistance in M. tuberculosis:Molecular mechanisms,tools,and applications[J]. IUBMB Life,2002,53(4):231-237. [11] Dong Luo,Qiang Chen,GuangchuXiong,et al. Prevalence and molecularcharacterization of multidrug-resistantM. tuberculosis in Jiangxiprovince,China[J]. Scientific Reports,2019,9(1):7315. doi: 10.1038/s41598-019-43547-2 [12] 张炜煜,杨修军,王慧,等. 吉林省耐多药结核分枝杆菌rpoB及katG基因突变特征分析[J]. 中国实验诊断学,2017,21(10):1731-1735. [13] 赵刚,贾庆军,吴亦斐,等. 浙江地区耐多药结核分枝杆菌基因突变特征分析[J]. 中华疾病控制杂志,2021,25(1):66-71. [14] Jia Hongbing,Xu Yuhui,SunZhaogang. Analysis on drug-resistance-associated mutations among multidrug-resistant mycobacterium tuberculosis isolates in China[J]. Antibiotics,2021,10(11):1367-1377. doi: 10.3390/antibiotics10111367 [15] 文书,林璋礼,刘丁发,等. 耐异烟肼结核分枝杆菌及其katG、inhA基因的突变[J]. 中国热带医学,2019,19(8):723-726. [16] 陈蕾. 四川地区结核分枝杆菌katG、inhA和rpoB基因突 变位点耐药水平及突变频率特征分析[J]. 临床肺科杂志,2022,27(2):242-246. [17] 王希江,谭云洪,贺文从,等. 结核分枝杆菌中利福平和异烟肼耐药相关基因突变与耐药水平的相关性研究[J]. 中国防痨杂志,2021,43(3):248-254. [18] Hu Y,Hoffner S,Jiang W,et al. Extensive transmission of isoniazid resistant M. tuberculosis and its association with increased multidrug-resistant TB in two rural counties of eastern China:A molecular epidemiological study[J]. BMC Infect Dis,2010,10(1):1-8. doi: 10.1186/1471-2334-10-43 [19] Narmandakh E,Tumenbayar O,Borolzoi T,et al. Genetic mutations associated with isoniazid resistance in mycobacterium tuberculosis in Mongolia[J]. Antimicrob Agents Chemother,2020,64(7):1-7. [20] Chara,Asho,Sing,et al. Pattern of inhA and katG mutations in isoniazid monoresistant mycobacterium tuberculosis isolates[J]. Lung India,2020,37(3):227-231.