留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脓毒症免疫抑制机制及免疫治疗的研究进展

黄光仙 王怡洁

黄光仙, 王怡洁. 脓毒症免疫抑制机制及免疫治疗的研究进展[J]. 昆明医科大学学报, 2025, 46(5): 1-11. doi: 10.12259/j.issn.2095-610X.S20250501
引用本文: 黄光仙, 王怡洁. 脓毒症免疫抑制机制及免疫治疗的研究进展[J]. 昆明医科大学学报, 2025, 46(5): 1-11. doi: 10.12259/j.issn.2095-610X.S20250501
Guangxian HUANG, Yijie WANG. Research Progress of Immunosuppression Mechanism and Immunotherapy in Sepsis[J]. Journal of Kunming Medical University, 2025, 46(5): 1-11. doi: 10.12259/j.issn.2095-610X.S20250501
Citation: Guangxian HUANG, Yijie WANG. Research Progress of Immunosuppression Mechanism and Immunotherapy in Sepsis[J]. Journal of Kunming Medical University, 2025, 46(5): 1-11. doi: 10.12259/j.issn.2095-610X.S20250501

脓毒症免疫抑制机制及免疫治疗的研究进展

doi: 10.12259/j.issn.2095-610X.S20250501
基金项目: 国家自然科学基金(82460370),云南省急诊创伤性疾病临床医学中心(YWLCYXZX2023300075),云南省老年疾病临床医学研究中心(202102AA310069),云南省创新团队(202305AS350019)
详细信息
    作者简介:

    黄光仙(1998~),女,云南昆明人,在读硕士研究生,主要从事老年重症疾病及多脏器功能保护研究工作

    通讯作者:

    王怡洁,E-mail:81543505@qq.com

  • 中图分类号: R457.2

Research Progress of Immunosuppression Mechanism and Immunotherapy in Sepsis

More Information
    Corresponding author: 王怡洁,副主任医师,博士生导师。现任昆明医科大学第一附属医院老年重症医学科副主任。中国医药生物技术协会转化医学分会第三届委员会委员,云南省转化医学会重症医学分会副主任委员,云南省医学会老年医学分会第十届委员会老年重症医学学组委员,云南省医师协会老年病医师分会第二届委员会委员,云南省抗癌协会肿瘤生物治疗专业委员会委员,中华病例说年度优秀案例评审专家,共发表学术论文18余篇,其中以第一作者/通信作者发表SCI论文7篇。主持国家自然科学基金地区基金2项,省级、厅级、其他项目各1项,参与多项省厅级课题。2022年度云南省卫生科技成果三等奖(7/10)。担任国家级急诊医学规培基地指导教师。从事重症医学专业20年,擅长脓毒症、重症肺炎、颅脑疾病等重症患者救治工作。
  • 摘要: 脓毒症是由感染引起的宿主反应失调,导致危及生命的器官功能障碍的综合征。脓毒症的免疫反应通常分为免疫亢进和免疫抑制两个阶段,免疫抑制被认为是导致患者继发感染和死亡率增加的主要原因。本文综述脓毒症免疫抑制的主要机制,包括免疫细胞的功能障碍、免疫抑制细胞因子的释放、免疫调节细胞的过度活化、免疫检查点的表达增加以及近年来备受关注的表观遗传失调等。同时,也总结了目前现有的及一些新的免疫治疗策略,包括免疫刺激性细胞因子(如GM-CSF、IL-7、IL-15)、免疫检查点抑制剂(如PD-1/PD-L1抗体、CTLA-4抗体、TIM-3抗体)及新兴免疫治疗方法(如间充质干细胞、钙卫蛋白抑制剂、髓样细胞触发受体1抑制剂)。本文聚焦表观遗传调控机制和间充质干细胞等新兴免疫治疗,旨在为脓毒症患者个体化精准免疫治疗提供理论支持。
  • 图  1  脓毒症免疫抑制的机制

    注:IL-4:白细胞介素-4;TGF-β:转化生长因子-β;Th1:1型辅助性T细胞;Th2:2型辅助性T细胞;Treg:调节性T细胞;DC:树突状细胞;M:单核巨噬细胞;M2:M2型巨噬细胞;MDSCs:髓源性抑制细胞;NK:自然杀伤细胞;T cell:T淋巴细胞;PD-1/PD-L1:程序性细胞死亡受体-1/程序性死亡配体-1;LAG-3:淋巴细胞活化基因-3;CTLA-4:细胞毒性T淋巴细胞抗原-4;TIM-3:T细胞免疫球蛋白及黏蛋白分子-3;MHC-II:主要组织相容性复合体II;Me:甲基化;Ac:乙酰化;HMT:组蛋白甲基转移酶;HDM:组蛋白去甲基化酶;HAT:组蛋白乙酰转移酶;HDAC:组蛋白去乙酰化酶;DNMT:DNA甲基转移酶;TET:DNA去甲基化酶。

    Figure  1.  Mechanisms of immunosuppression in sepsis

    图  2  脓毒症效应细胞和调节细胞的免疫抑制机制

    注:CCR7:趋化因子受体7。

    Figure  2.  Immunosuppressive mechanisms of effector and regulatory cells in sepsis

    图  3  免疫抑制细胞因子释放增加致脓毒症免疫抑制机制

    注:IL-4:白细胞介素-4;TGF-β:转化生长因子-β;Th1:1型辅助性T细胞;Treg:调节性T细胞;M1:M1型巨噬细胞;MDSCs:髓源性抑制细胞。

    Figure  3.  Increased release of immunosuppressive cytokines leads to immunosuppression in sepsis

    图  4  脓毒症的免疫调节治疗

    Figure  4.  Immunomodulatory therapy for sepsis

  • [1] Vucelić V,Klobučar I,Đuras-Cuculić B,et al. Sepsis and septic shock - an observational study of the incidence,management,and mortality predictors in a medical intensive care unit[J]. Croatian Medical Journal,2020,61(5):429-439. doi: 10.3325/cmj.2020.61.429
    [2] Joosten S C M,Wiersinga W J,Poll T van der. Dysregulation of host-pathogen interactions in sepsis: Host-related factors[J]. Seminars in Respiratory and Critical Care Medicine,2024,45(4):469-478. doi: 10.1055/s-0044-1787554
    [3] Cao M,Wang G,Xie J. Immune dysregulation in sepsis: Experiences,lessons and perspectives[J]. Cell Death Discovery,2023,9(1):465. doi: 10.1038/s41420-023-01766-7
    [4] Unsinger J,Walton A H,Blood T,et al. Frontline science: OX40 agonistic antibody reverses immune suppression and improves survival in sepsis[J]. Journal of Leukocyte Biology,2021,109(4):697-708. doi: 10.1002/JLB.5HI0720-043R
    [5] Wei Y,Kim J,Ernits H,et al. The septic neutrophil-friend or foe[J]. Shock (augusta,Ga.),2021,55(2):147-155. doi: 10.1097/SHK.0000000000001620
    [6] Huang S,Chen Y,Gong F,et al. Septic macrophages induce T cells immunosuppression in a cell-cell contact manner with the involvement of CR3[J]. Heliyon,2024,10(1):e23266. doi: 10.1016/j.heliyon.2023.e23266
    [7] Lu Z Q,Zhang C,Zhao L J,et al. Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway[J]. Burns & Trauma,2024,12:tkad025.
    [8] Yao R Q,Li Z X,Wang L X,et al. Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis[J]. Theranostics,2022,12(10):4606-4628. doi: 10.7150/thno.72760
    [9] Nascimento D C,Viacava P R,Ferreira R G,et al. Sepsis expands a CD39+ plasmablast population that promotes immunosuppression via adenosine-mediated inhibition of macrophage antimicrobial activity[J]. Immunity,2021,54(9): 2024-2041. e8.
    [10] Ma K,Luo L,Yang M,et al. The suppression of sepsis-induced kidney injury via the knockout of T lymphocytes[J]. Heliyon,2024,10(1):e23311. doi: 10.1016/j.heliyon.2023.e23311
    [11] Reizine F,Grégoire M,Lesouhaitier M,et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(8):e2115139119.
    [12] Gao K,Jin J,Huang C,et al. Exosomes derived from septic mouse serum modulate immune responses via exosome-associated cytokines[J]. Frontiers in Immunology,2019,10:1560. doi: 10.3389/fimmu.2019.01560
    [13] Neumann C,Scheffold A,Rutz S. Functions and regulation of T cell-derived interleukin-10[J]. Seminars in Immunology,2019,44:101344. doi: 10.1016/j.smim.2019.101344
    [14] Wei X,Zhang J,Cui J,et al. Adaptive plasticity of natural interleukin-35-induced regulatory T cells (Tr35) that are required for T-cell immune regulation[J]. Theranostics,2024,14(7):2897-2914. doi: 10.7150/thno.90608
    [15] Bergmann C B,Beckmann N,Salyer C E,et al. Potential targets to mitigate trauma- or sepsis-induced immune suppression[J]. Frontiers in Immunology,2021,12:622601. doi: 10.3389/fimmu.2021.622601
    [16] Qichuan Y,Li Y,Wang H,et al. TSLP induces a proinflammatory phenotype in circulating innate cells and predicts prognosis in sepsis patients[J]. FEBS Open Bio,2024,14(3):525. doi: 10.1002/2211-5463.13739
    [17] Gaborit B J,Roquilly A,Louvet C,et al. Regulatory T cells expressing tumor necrosis factor receptor type 2 play a major role in CD4+ T-cell impairment during sepsis[J]. Journal of Infectious Diseases,2020,222(7):1222-1234. doi: 10.1093/infdis/jiaa225
    [18] Shi Y,Wu D,Wang Y,et al. Treg and neutrophil extracellular trap interaction contributes to the development of immunosuppression in sepsis[J]. JCI Insight,2024,9(14):e180132. doi: 10.1172/jci.insight.180132
    [19] Zhang W,Fang X,Gao C,et al. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets[J]. Cytokine & Growth Factor Reviews,2023,69:90-103.
    [20] Li K,Shi H,Zhang B,et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer[J]. Signal Transduction and Targeted Therapy,2021,6(1):362. doi: 10.1038/s41392-021-00670-9
    [21] McBride M A,Patil T K,Bohannon J K,et al. Immune checkpoints: novel therapeutic targets to attenuate sepsis-induced immunosuppression[J]. Frontiers in Immunology,2020,11:624272.
    [22] Chen J,Chen R,Huang S,et al. Atezolizumab alleviates the immunosuppression induced by PD‑L1‑positive neutrophils and improves the survival of mice during sepsis[J]. Molecular Medicine Reports,2021,23(2):144.
    [23] Rossi A L,Le M,Chung C S,et al. A novel role for programmed cell death receptor ligand 2 in sepsis-induced hepatic dysfunction[J]. American journal of physiology. Gastrointestinal and liver physiology,2019,316(1):G106-G114. doi: 10.1152/ajpgi.00204.2018
    [24] Wakeley M E,Armstead B E,Gray C C,et al. Lymphocyte HVEM/BTLA co-expression after critical illness demonstrates severity indiscriminate upregulation,impacting critical illness-induced immunosuppression[J]. Frontiers in Medicine,2023,10:1176602. doi: 10.3389/fmed.2023.1176602
    [25] Lange A,Cajander S,Magnuson A,et al. Sustained elevation of soluble B- and T- lymphocyte attenuator predicts long-term mortality in patients with bacteremia and sepsis[J]. PLOS One,2022,17(3):e0265818. doi: 10.1371/journal.pone.0265818
    [26] Cheng W,Zhang J,Li D,et al. CTLA-4 expression on CD4+ lymphocytes in patients with sepsis-associated immunosuppression and its relationship to mTOR mediated autophagic-lysosomal disorder[J]. Frontiers in Immunology,2024,15:1396157. doi: 10.3389/fimmu.2024.1396157
    [27] THuang S,Liu D,Sun J,et al. Tim-3 regulates sepsis-induced immunosuppression by inhibiting the NF-κB signaling pathway in CD4 T cells[J]. Mol Ther.,2022,30(3):1227-1238. doi: 10.1016/j.ymthe.2021.12.013
    [28] Mewes C,Alexander T,Büttner B,et al. Effect of the lymphocyte activation gene 3 polymorphism rs951818 on mortality and disease progression in patients with sepsis-a prospective genetic association study[J]. Journal of Clinical Medicine,2021,10(22):5302. doi: 10.3390/jcm10225302
    [29] Falcão-Holanda R B,Brunialti M K C,Jasiulionis M G,et al. Epigenetic regulation in sepsis,role in pathophysiology and therapeutic perspective[J]. Frontiers in Medicine,2021,8:685333. doi: 10.3389/fmed.2021.685333
    [30] C ó rneo E da S,Michels M,Dal-Pizzol F. Sepsis,immunosuppression and the role of epigenetic mechanisms[J]. Expert Review of Clinical Immunology,2021,17(2):169-176. doi: 10.1080/1744666X.2021.1875820
    [31] Zhang Y,Sun Z,Jia J,et al. Overview of histone modification[J]. Advances in Experimental Medicine and Biology,2021,1283:1-16.
    [32] Denis M,Dupas T,Persello A,et al. An O-GlcNAcylomic approach reveals ACLY as a potential target in sepsis in the young rat[J]. International journal of molecular sciences,2021,22(17):9236. doi: 10.3390/ijms22179236
    [33] Moreno-Yruela C,Zhang D,Wei W,et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases[J]. Science Advances,2022,8(3):eabi6696. doi: 10.1126/sciadv.abi6696
    [34] Yu K,Proost P. Insights into peptidylarginine deiminase expression and citrullination pathways[J]. Trends in Cell Biology,2022,32(9):746-761. doi: 10.1016/j.tcb.2022.01.014
    [35] Lawton M L,Inge M M,Blum B C,et al. Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming[J]. PLoS biology,2024,22(12):e3002943. doi: 10.1371/journal.pbio.3002943
    [36] Zhang S,Zhan L,Li X,et al. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells[J]. International Journal of Biological Sciences,2021,17(13):3381-3400. doi: 10.7150/ijbs.62001
    [37] Poli V,Pui-Yan Ma V,Di Gioia M,et al. Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation[J]. Iscience,2021,24(11):103256. doi: 10.1016/j.isci.2021.103256
    [38] Wu C,Li A,Hu J,et al. Histone deacetylase 2 is essential for LPS-induced inflammatory responses in macrophages[J]. Immunology & Cell Biology,2019,97(1):72-84.
    [39] Chen W,Liu J,Ge F,et al. Long noncoding RNA HOTAIRM1 promotes immunosuppression in sepsis by inducing T cell exhaustion[J]. Journal of Immunology (baltimore,Md. : 1950),2022,208(3): 618-632.
    [40] Du J,Jiang H,Wang B. Long non-coding RNA GAS5/miR-520-3p/SOCS3 axis regulates inflammatory response in lipopolysaccharide-induced macrophages[J]. Biochemical Genetics,2022,60(5):1793-1808. doi: 10.1007/s10528-021-10179-z
    [41] Harkless R,Singh K,Christman J,et al. Microvesicle-mediated transfer of DNA methyltransferase proteins results in recipient cell immunosuppression[J]. The Journal of Surgical Research,2023,283:368-376. doi: 10.1016/j.jss.2022.10.030
    [42] Beltrán-García J,Casabó-Vallés G,Osca-Verdegal R,et al. Alterations in leukocyte DNA methylome are associated to immunosuppression in severe clinical phenotypes of septic patients[J]. Frontiers in Immunology,2023,14:1333705.
    [43] Tu F,Pan L,Wu W,et al. Recombinant GM-CSF enhances the bactericidal ability of PMNs by increasing intracellular IL-1β and improves the prognosis of secondary pseudomonas aeruginosa pneumonia in sepsis[J]. Journal of Leukocyte Biology,2023,114(5):443-458. doi: 10.1093/jleuko/qiad088
    [44] Sehgal R,Maiwall R,Rajan V,et al. Granulocyte-macrophage colony-stimulating factor modulates myeloid-derived suppressor cells and treg activity in decompensated cirrhotic patients with sepsis[J]. Frontiers in Immunology,2022,13:828949. doi: 10.3389/fimmu.2022.828949
    [45] Bhavani S V,Spicer A,Sinha P,et al. Distinct immune profiles and clinical outcomes in sepsis subphenotypes based on temperature trajectories[J]. Intensive Care Medicine,2024,50(12):2094-2104. doi: 10.1007/s00134-024-07669-0
    [46] Fu C,Zhang X,Zhang X,et al. Advances in IL-7 research on tumour therapy[J]. Pharmaceuticals (basel,Switzerland),2024,17(4):415. doi: 10.3390/ph17040415
    [47] Daix T,Mathonnet A,Brakenridge S,et al. Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: A double-blind,randomized,placebo-controlled trial[J]. Annals of Intensive Care,2023,13(1):17. doi: 10.1186/s13613-023-01109-w
    [48] Bidar F,Hamada S,Gossez M,et al. Correction to: recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients[J]. Annals of Intensive Care,2022,12(1):30. doi: 10.1186/s13613-022-01007-7
    [49] Lélu K,Dubois C,Evlachev A,et al. Viral delivery of IL-7 is a potent immunotherapy stimulating innate and adaptive immunity and confers survival in sepsis models[J]. Journal of Immunology (baltimore,Md. : 1950),2022,209(1): 99-117.
    [50] He C,Yu Y,Wang F,et al. Pretreatment with interleukin-15 attenuates inflammation and apoptosis by inhibiting NF-κB signaling in sepsis-induced myocardial dysfunction[J]. European Journal of Histochemistry: EJH,2024,68(2):4019.
    [51] Saito M,Inoue S,Yamashita K,et al. IL-15 improves aging-induced persistent T cell exhaustion in mouse models of repeated sepsis[J]. Shock (augusta,Ga.),2020,53(2):228-235. doi: 10.1097/SHK.0000000000001352
    [52] Yang L,Gao Q,Li Q,et al. PD-L1 blockade improves survival in sepsis by reversing monocyte dysfunction and immune disorder[J]. Inflammation,2024,47(1):114-128. doi: 10.1007/s10753-023-01897-0
    [53] Zhao Z Z,Wang X L,Xie J,et al. Therapeutic effect of an anti-human programmed death-ligand 1 (PD-L1) nanobody on polymicrobial sepsis in humanized mice[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research,2021,27:e926820.
    [54] Sun R,Huang J,Liu L,et al. Neutrophils mediate T lymphocyte function in septic mice via the CD80/cytotoxic T lymphocyte antigen-4 signaling pathway[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2021,33(7):849-854.
    [55] Paterson C W,Fay K T,Chen C W,et al. CTLA-4 checkpoint inhibition improves sepsis survival in alcohol-exposed mice[J]. Immunohorizons,2024,8(1):74-88. doi: 10.4049/immunohorizons.2300060
    [56] Busch L M,Sun J,Cui X,et al. Checkpoint inhibitor therapy in preclinical sepsis models: A systematic review and meta-analysis[J]. Intensive Care Medicine Experimental,2020,8(1):7. doi: 10.1186/s40635-019-0290-x
    [57] Liu S,Wang C,Jiang Z,et al. Tim-3 blockade decreases the apoptosis of CD8+ T cells and reduces the severity of sepsis in mice[J]. Journal of Surgical Research,2022,279:8-16. doi: 10.1016/j.jss.2022.05.014
    [58] Wu H,Tang T,Deng H,et al. Immune checkpoint molecule tim-3 promotes NKT cell apoptosis and predicts poorer prognosis in sepsis[J]. Clinical Immunology (orlando,Fla.),2023,254:109249. doi: 10.1016/j.clim.2023.109249
    [59] Li Y,Sun Z,Li Y,et al. IL-1β-stimulated bone mesenchymal stem cell-derived exosomes mitigate sepsis through modulation of HMGB1/AKT pathway and M2 macrophage polarization[J]. Current Molecular Medicine,2025,25(1):79-89. doi: 10.2174/0115665240277763231206051401
    [60] Alp E,Gonen Z B,Gundogan K,et al. The effect of mesenchymal stromal cells on the mortality of patients with sepsis and septic shock: A promising therapy[J]. Emergency Medicine International,2022,2022:9222379.
    [61] Zhang L,Zhang X,Liu Y,et al. CD146+ umbilical cord mesenchymal stem cells exhibit high immunomodulatory activity and therapeutic efficacy in septic mice[J]. Journal of Inflammation Research,2023,16:579-594. doi: 10.2147/JIR.S396088
    [62] Wang Q,Long G,Luo H,et al. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury[J]. Biomedicine & Pharmacotherapy,2023,168:115674.
    [63] Shi W,Wan T T,Li H H,et al. Blockage of S100A8/A9 ameliorates septic nephropathy in mice[J]. Frontiers in Pharmacology,2023,14:1172356. doi: 10.3389/fphar.2023.1172356
    [64] Boufenzer A,Carrasco K,Jolly L,et al. Potentiation of NETs release is novel characteristic of TREM-1 activation and the pharmacological inhibition of TREM-1 could prevent from the deleterious consequences of NETs release in sepsis[J]. Cellular and Molecular Immunology,2021,18(2):452-460. doi: 10.1038/s41423-020-00591-7
    [65] Siskind S,Brenner M,Wang P. TREM-1 modulation strategies for sepsis[J]. Frontiers in Immunology,2022,13:907387. doi: 10.3389/fimmu.2022.907387
    [66] François B,Lambden S,Fivez T,et al. Prospective evaluation of the efficacy,safety,and optimal biomarker enrichment strategy for nangibotide,a TREM-1 inhibitor,in patients with septic shock (ASTONISH): A double-blind,randomised,controlled,phase 2b trial[J]. The Lancet. Respiratory Medicine,2023,11(10):894-904. doi: 10.1016/S2213-2600(23)00158-3
    [67] François B,Wittebole X,Ferrer R,et al. Nangibotide in patients with septic shock: A Phase 2a randomized controlled clinical trial[J]. Intensive Care Med.,2020,46(7):1425-1437. doi: 10.1007/s00134-020-06109-z
    [68] François B,Lambden S,Garaud J J,et al. Evaluation of the efficacy and safety of TREM-1 inhibition with nangibotide in patients with COVID-19 receiving respiratory support: the ESSENTIAL randomised,double-blind trial[J]. Eclinicalmedicine,2023,60:102013. doi: 10.1016/j.eclinm.2023.102013
    [69] Wu Y,He Y,Liu C,et al. Histone deacetylase inhibitor (SAHA) reduces mortality in an endotoxemia mouse model by suppressing glycolysis[J]. International Journal of Molecular Sciences,2023,24(15):12448. doi: 10.3390/ijms241512448
  • [1] 李凑文, 宫冰, 邵润飞, 施壮娥, 杨丽顺, 陈国兵.  蛋白质乳酸化修饰在脓毒症器官障碍中的作用机制, 昆明医科大学学报.
    [2] 李从信, 岳海东, 朱鹏熹, 黄光仙, 沐领捷, 彭亚男, 王怡洁, 杨洋.  老年脓毒症患者不同维生素D3水平与免疫炎症指标相关性分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250208
    [3] 刘幸, 李畏娴, 朱翔, 刘梦醒, 李娜, 夏加伟, 张乐, 武彦, 李生浩.  基于Lasso回归构建恙虫病合并脓毒症的列线图模型, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240906
    [4] 牛俊杰, 姬文娟, 于拽拽.  肠道菌群、血清ET、PCT水平与脓毒症病情程度、预后的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240420
    [5] 薛淋淋, 李秉翰, 刘春云, 李卫昆, 常丽仙, 李慧敏, 祁燕伟, 刘立.  预测普通病房中丙型肝炎肝硬化并脓毒症患者潜在死亡列线图的建立及评价, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230630
    [6] 张赛琼, 李武全, 陈青江.  连续性肾脏替代治疗应用于重度烧伤脓毒症的临床疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231114
    [7] 李文卓, 杨莉, 夏婧.  心脉隆注射液对脓毒症心肌病的临床疗效观察, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221221
    [8] 王虹, 杨德兴, 王强, 周维钰, 唐杰夫, 王振方, 付凯, 刘圣哲, 刘荣.  ICU脓毒症患者发生再喂养综合征的危险因素分析及预测模型建立, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221102
    [9] 邓玉梅, 宋家美, 刘仲伟, 杨洁, 孟昱时.  淋巴细胞免疫治疗次数对复发性流产的疗效观察, 昆明医科大学学报.
    [10] 徐键, 王梓瑜, 陈耀祥, 牟波, 金焰, 马蕾.  PCT、CRP检测在老年肺炎合并脓毒症患者中的应用, 昆明医科大学学报.
    [11] 刘桠名, 徐冕, 颜悦新, 周凤高, 许成, 赵琨, 蒋国云, 武彧, 刘荣.  基于代谢组学的脓毒症大鼠生物标志物研究, 昆明医科大学学报.
    [12] 秦雨琪, 张丽娟, 任伟东, 董坚.  骨髓干细胞输注修复放疗免疫抑制的动物实验, 昆明医科大学学报.
    [13] 滕琰.  血液灌流治疗脓毒症时对炎症因子的影响, 昆明医科大学学报.
    [14] 谢姝姮.  小鼠缺血性脑卒中后免疫抑制及其机制, 昆明医科大学学报.
    [15] 杨乐.  过敏性鼻炎合并支气管哮喘或慢性咳嗽37例临床治疗分析, 昆明医科大学学报.
    [16] 王锦.  血糖变异性对脓毒症28 d死亡率临床影响, 昆明医科大学学报.
    [17] 徐盈.  脓毒症大鼠肿瘤坏死因子-a、内皮素-1、核因子kB表达与心肌损伤及药物影响的研究, 昆明医科大学学报.
    [18] 缪玉兰.  凝血酶敏感蛋白-1介导脓毒症肝损伤中ERK通路的作用研究, 昆明医科大学学报.
    [19] 缪玉兰.  凝血酶敏感蛋白-1对脓毒症肝损伤影响的实验研究, 昆明医科大学学报.
    [20] 血必净注射液对脓毒症患者促炎/抗炎平衡的临床应用, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  155
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 刊出日期:  2025-05-30

目录

    /

    返回文章
    返回