留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制

沈晓霞 赵晓东 宋永健

沈晓霞, 赵晓东, 宋永健. SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制[J]. 昆明医科大学学报, 2025, 46(5): 55-64. doi: 10.12259/j.issn.2095-610X.S20250507
引用本文: 沈晓霞, 赵晓东, 宋永健. SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制[J]. 昆明医科大学学报, 2025, 46(5): 55-64. doi: 10.12259/j.issn.2095-610X.S20250507
Xiaoxia SHEN, Xiaodong ZHAO, Yongjian SONG. SIRT1 Agonist Treatment of Mice with Coronary Artery Disease Improves Myocardial Function by modulating Nrf2-GPX4 Ferroptosis Pathway[J]. Journal of Kunming Medical University, 2025, 46(5): 55-64. doi: 10.12259/j.issn.2095-610X.S20250507
Citation: Xiaoxia SHEN, Xiaodong ZHAO, Yongjian SONG. SIRT1 Agonist Treatment of Mice with Coronary Artery Disease Improves Myocardial Function by modulating Nrf2-GPX4 Ferroptosis Pathway[J]. Journal of Kunming Medical University, 2025, 46(5): 55-64. doi: 10.12259/j.issn.2095-610X.S20250507

SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制

doi: 10.12259/j.issn.2095-610X.S20250507
基金项目: 河北省医学科学研究课题计划项目(20210315)。
详细信息
    作者简介:

    沈晓霞(1985~),女,河北张家口人,医学学士,副主任医师,主要从事心血管疾病研究与治疗工作

  • 中图分类号: R541.4

SIRT1 Agonist Treatment of Mice with Coronary Artery Disease Improves Myocardial Function by modulating Nrf2-GPX4 Ferroptosis Pathway

  • 摘要:   目的  探讨SIRT1激动剂对冠状动脉病变(Coronary artery disease,CAD)小鼠心肌功能的保护机制。  方法  采用随机数字表法将60只雄性C57BL/6J小鼠随机分为对照组、模型组、SRT1激动剂组(SRT 1460组,30 mg/kg)、Nrf2抑制剂组(ML385组,10 mg/kg)及SRT 1460+ML385联合治疗组,每组12只。对照组小鼠饲喂普通饲料,其余各组小鼠饲喂高脂饲料复制动脉粥样硬化小鼠模型,造模周期为12周。模型构建成功后,超声参数检测小鼠心肌功能;二维超声斑点追踪技术检测小鼠左室各层心肌应变;苏木素-伊红染色观察心肌组织病理变化;ELISA测定cTnI、LDH、CK水平; TUNEL分析心肌细胞凋亡情况;DHE荧光法检测心肌组织ROS水平;比色法检测心肌组织SOD活性、MDA、GSH和Fe2+含量;qPCR和Western Blot检测心肌组织Nrf2、GPX4、FTH1、ACSL4的基因和蛋白表达。  结果  与模型组比较,SRT 1460组LVEDd和LVPWd水平降低(P < 0.05),GLSendo、GLSmid和GCSendo升高(P < 0.05);SRT 1460组心肌细胞间隙变窄,胶原纤维沉积减少。与模型组比较,SRT 1460组小鼠血清cTnI、CK、LDH、心肌细胞凋亡率、ROS、MDA、Fe2+含量、ACSL4 mRNA及蛋白水平降低(P < 0.05)。相反,SOD活性、GSH含量、Nrf2、GPX4、FTH1 mRNA及蛋白水平均升高(P < 0.05)。Nrf2抑制剂ML385显著减弱SRT 1460对上述标记物的抑制作用(P < 0.05)。  结论  SRT 1460能提高冠状动脉病变小鼠GLSendo、GLSmid和GCSmid,改善左室重构和收缩功能,其机制可能与调控Nrf2-GPX4铁死亡途径有关。
  • 图  1  小鼠心肌组织苏木素-伊红染色(×200)

    注:N:细胞核;MC:心肌细胞;E:血管内皮;C:毛细血管;Mx:黏液样变性;v:空泡;*:炎症细胞浸润;红色箭头:指出细胞排列紊乱、纤维化或其他组织异常区域。

    Figure  1.  HE staining of mouse myocardial tissue(×200)

    图  2  各组小鼠心脏结构和功能改变

    Figure  2.  Heart structural and function changes of mice in each group

    图  3  各组小鼠左室各层心肌应变

    Figure  3.  Cardiac strain in each LV layer of mice in each group

    图  4  TUNEL染色检测各组小鼠心肌细胞的凋亡情况(×200)

    Figure  4.  Apoptosis of cardiomyocytes in each group by TUNEL staining(×200)

    图  5  各组小鼠心肌组织ROS水平情况(D苏木素-伊红染色,×400)

    Figure  5.  ROS levels in mouse myocardial tissues in each group (DHE staining,×400)

    图  6  各组小鼠心肌组织Nrf2、GPX4、FTH1、ACSL4蛋白表达条带图[($\bar x \pm s $),n = 6]

    A:对照组;B:模型组;C:SRT 1460组;D:ML385组;E:SRT 1460+ML385组。

    Figure  6.  Protein expression of Nrf2,GPX4,FTH1 and ACSL4 in mouse myocardial tissues in each group [($\bar x \pm s $),n = 6]

    表  1  引物序列

    Table  1.   Primer sequences

    引物 正向引物 反向引物
    Nrf2 F-5' TGATATTCCCGGTCACATCGAG-3' R-5' TGTCCTGTTGCATACCGTCT-3'
    GPX4 F-5' GTGGATGAAGATCCAACCC-3' R-5' TTGTCGATGAGGAACTTGG-3'
    FTH1 F-5' CTTCCTTCAGGATATCAAGAAACC-3' R-5' TCCAAATGTAATGCACACTCC-3'
    ACSL4 F-5' AGTACAACTTTCCTCTTGTGAC-3' R-5' AAGCCTCAGATTCATTTAGCC-3'
    GAPDH F-5' GGCATCCACGAAACTACATTCAA-3' R-5' AGCCAGAGCAGTGATCTCCTTCT-3'
    下载: 导出CSV

    表  2  各组小鼠左心室常规超声参数比较 [($\bar x \pm s $),n = 12]

    Table  2.   Comparison of conventional ultrasound parameters of left ventricle in each group [($\bar x \pm s $),n = 12]

    组别 LVEDd(mm) LVPWd(mm) LVEF(%) E/E'
    对照组 5.74 ± 0.53 1.72 ± 0.21 74.02 ± 10.64 14.51 ± 1.10
    模型组 7.83 ± 2.13* 2.14 ± 0.41* 61.38 ± 11.13* 17.97 ± 3.17
    SRT 1460组
    ML385组
    6.34 ± 1.68#
    9.49 ± 1.19#
    1.86 ± 0.20#
    2.59 ± 0.68#
    72.13 ± 13.14#
    50.36 ± 9.10#
    14.22 ± 5.06
    21.89 ± 4.97
    SRT 1460+ML385组 7.81 ± 2.30& 2.10 ± 0.40& 60.53 ± 13.02& 18.43 ± 4.12
    F 8.956 7.500 8.403 7.637
    P <0.001* <0.001* <0.001* <0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV

    表  3  各组小鼠内膜下层、中层及外膜下层心肌应变值比较 [($\bar x \pm s $),n = 12]

    Table  3.   Comparison of myocardial strain values in the lower,middle and outer membrane layers of the mice [($\bar x \pm s $),n = 12]

    组别 GLSendo(%) GLSmid(%) GLSepi(%) GCSendo(%) GCSmid(%) GCSepi(%)
    对照组 19.71 ± 1.66 16.98 ± 1.32 11.87 ± 1.75 26.34 ± 2.78 14.64 ± 2.17 9.51 ± 2.42
    模型组 16.39 ± 2.21* 14.10 ± 2.69* 9.25 ± 1.98* 22.83 ± 4.07* 10.02 ± 3.35a 6.50 ± 1.33a
    SRT 1460组
    ML385组
    19.04 ± 2.99#
    12.81 ± 3.83#
    16.86 ± 3.16#
    10.89 ± 3.68#
    11.35 ± 4.17#
    7.33 ± 3.07#
    26.15 ± 6.93#
    18.66 ± 3.88#
    13.83 ± 3.90#
    7.85 ± 1.24#
    8.13 ± 2.39#
    5.14 ± 1.13#
    SRT 1460+ML385组 15.96 ± 4.43& 13.41 ± 3.25& 8.96 ± 2.38& 21.93 ± 5.42& 10.23 ± 2.86& 6.31 ± 2.03&
    F 8.916 9.090 5.240 5.262 11.834 9.398
    P <0.001* <0.001* 0.001* 0.001* <0.001* <0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV

    表  4  各组小鼠血清cTnI、LDH、CK水平比较 [($\bar x \pm s $),n = 6]

    Table  4.   Comparison of mouse serum levels of cTnI,LDH,and CK in each group [($\bar x \pm s $),n = 6]

    组别 cTnI(ng/mL) LDH(U/L) CK(U/L)
    对照组 3.77 ± 0.59 22.08 ± 3.22 34.60 ± 4.47
    模型组 6.29 ± 1.62* 33.57 ± 6.19 58.02 ± 11.61*
    SRT 1460组
    ML385组
    4.99 ± 0.74#
    8.53 ± 0.85#
    24.57 ± 5.78
    42.78 ± 6.26
    39.39 ± 7.09#
    74.22 ± 8.98#
    SRT 1460+ML385组 6.52 ± 1.94& 31.17 ± 4.37 54.33 ± 9.64&
    F 11.906 14.223 19.747
    P P < 0.001* P < 0.001* P < 0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV

    表  5  各组小鼠心肌细胞的凋亡率和ROS水平[($\bar x \pm s $),n = 6]

    Table  5.   Apoptosis rate and ROS levels of cardiomyocytes in each group [($\bar x \pm s $),n = 6]

    组别 细胞凋亡率
    (%)
    ROS
    (DHE荧光强度)
    对照组 3.24 ± 0.74 18.28 ± 1.92
    模型组 21.06 ± 4.52* 25.87 ± 4.65*
    SRT 1460组
    ML385组
    14.66 ± 2.45#
    28.45 ± 3.64#
    19.14 ± 2.31#
    34.42 ± 2.90#
    SRT 1460+ML385组 22.41 ± 6.49& 24.38 ± 5.23&
    F 33.418 18.932
    P P < 0.001* P < 0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV

    表  6  各组小鼠心肌组织SOD活性、MDA、GSH和Fe2+含量比较[($\bar x \pm s $),n = 6]

    Table  6.   Comparison of SOD activity,MDA,GSH and Fe2 + content in myocardial tissues [($\bar x \pm s $),n = 6]

    组别 SOD(U/mgprot) MDA(μmol/gprot) GSH(μmol/gprot) Fe2+ (μmol/gprot)
    对照组 52.93 ± 3.84 1.96 ± 0.38 173.17 ± 19.26 4.37 ± 0.35
    模型组 37.33 ± 7.07* 4.25 ± 1.05* 109.91 ± 18.02* 8.45 ± 2.52*
    SRT 1460组
    ML385组
    48.55 ± 6.31#
    28.17 ± 6.31#
    2.53 ± 0.52#
    5.84 ± 0.92#
    161.32 ± 30.04#
    74.17 ± 18.49#
    5.19 ± 0.93#
    10.98 ± 2.26#
    SRT 1460+ML385组 35.55 ± 8.89& 3.52 ± 0.70& 122.07 ± 23.36& 8.55 ± 2.74&
    F 13.633 24.226 19.345 10.989
    P <0.001* <0.001* <0.001* <0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV

    表  7  各组小鼠心肌组织Nrf2、GPX4、FTH1、ACSL4 mRNA水平比较[($\bar x \pm s $),n = 6]

    Table  7.   Comparison of mRNA levels of Nrf2,GPX4,FTH1 and ACSL4 in mouse myocardial tissues in each group [($\bar x \pm s $),n = 6]

    组别 Nrf2 GPX4 FTH1 ACSL4
    对照组 1.00 ± 0.14 1.01 ± 0.11 1.00 ± 0.06 1.00 ± 0.11
    模型组 0.60 ± 0.11* 0.61 ± 0.13* 0.59 ± 0.16* 1.48 ± 0.17*
    SRT 1460组
    ML385组
    0.95 ± 0.23#
    0.45 ± 0.09#
    0.90 ± 0.19#
    0.40 ± 0.09#
    0.94 ± 0.22#
    0.39 ± 0.12#
    0.98 ± 0.42#
    1.71 ± 0.21#
    SRT 1460+ML385组 0.56 ± 0.14& 0.61 ± 0.18& 0.63 ± 0.24& 1.61 ± 0.33&
    F 15.849 17.240 13.206 9.706
    P <0.001* <0.001* <0.001* <0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV

    表  8  各组小鼠心肌组织Nrf2、GPX4、FTH1、ACSL4蛋白水平比较[($\bar x \pm s $),n = 6]

    Table  8.   Comparison of the protein expression of Nrf2,GPX4,FTH1 and ACSL4 in mouse myocardial tissues in each group [($\bar x \pm s $),n = 6]

    组别 Nuclear Nrf2/LaminB1 GPX4/GAPDH FTH1/GAPDH ACSL4/GAPDH
    对照组 1.00 ± 0.11 1.00 ± 0.12 1.00 ± 0.07 1.00 ± 0.12
    模型组 0.61 ± 0.18* 0.60 ± 0.18* 0.66 ± 0.17* 1.48 ± 0.39*
    SRT 1460组
    ML385组
    0.96 ± 0.23#
    0.43 ± 0.11#
    0.86 ± 0.15#
    0.40 ± 0.03#
    0.95 ± 0.19#
    0.39 ± 0.11#
    1.01 ± 0.16#
    2.23 ± 0.33#
    SRT 1460+ML385组 0.61 ± 0.19& 0.65 ± 0.18& 0.63 ± 0.13& 1.43 ± 0.31&
    F 12.946 15.426 18.412 19.188
    P <0.001* <0.001* <0.001* <0.001*
      与对照组相比,*P < 0.05;与模型组相比,#P < 0.05;与SRT 1460组相比,&P < 0.05。
    下载: 导出CSV
  • [1] Bergström G,Persson M,Adiels M,et al. Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population[J]. Circulation,2021,144(12):916-929. doi: 10.1161/CIRCULATIONAHA.121.055340
    [2] Bytyçi I,Shenouda R,Wester P,et al. Carotid Atherosclerosis in Predicting Coronary Artery Disease: A Systematic Review and Meta-Analysis[J]. Arterioscler Thromb Vasc Biol,2021,41(4):e224-e237.
    [3] Pagliaro BR,Cannata F,Stefanini GG,Bolognese L. Myocardial ischemia and coronary disease in heart failure[J]. Heart Fail Rev,2020,25(1):53-65.
    [4] Savira F,Magaye R,Liew D,et al. Cardiorenal syndrome: Multi-organ dysfunction involving the heart,kidney and vasculature[J]. Br J Pharmacol,2020,177(13):2906-2922.
    [5] Yu Y,Yan Y,Niu F,et al. Ferroptosis: a cell death connecting oxidative stress,inflammation and cardiovascular diseases[J]. Cell Death Discov,2021,7(1):193. doi: 10.1038/s41420-021-00579-w
    [6] Wang Y,Zhao Y,Ye T,et al. Ferroptosis Signaling and Regulators in Atherosclerosis.[J]. Front Cell Dev Biol,2021,9:809457. doi: 10.3389/fcell.2021.809457
    [7] Zhang J,Wang X,Guan B,et al. Qing-Xin-Jie-Yu Granule inhibits ferroptosis and stabilizes atherosclerotic plaques by regulating the GPX4/xCT signaling pathway[J]. J Ethnopharmacol,2023,301:115852. doi: 10.1016/j.jep.2022.115852
    [8] Ma C,Zheng X,Wu X,et al. microRNA-181c-5p stimulates the development of coronary artery disease by targeting SIRT1[J]. Hellenic J Cardiol,2023,69:31-40. doi: 10.1016/j.hjc.2022.10.001
    [9] Zhao S,Yu L. Sirtuin 1 activated by SRT1460 protects against myocardial ischemia/reperfusion injury[J]. Clin Hemorheol Microcirc,2021,78(3):271-281. doi: 10.3233/CH-201061
    [10] Nandave M,Acharjee R,Bhaduri K,Upadhyay J,Rupanagunta GP,Ansari MN. A pharmacological review on SIRT 1 and SIRT 2 proteins,activators,and inhibitors: Call for further research[J]. Int J Biol Macromol,2023,242(Pt 1):124581.
    [11] Cheng P,Wang X,Liu Q,et al. LuQi formula attenuates Cardiomyocyte ferroptosis via activating Nrf2/GPX4 signaling axis in heart failure[J]. Phytomedicine,2024,125:155357. doi: 10.1016/j.phymed.2024.155357
    [12] Golforoush P,Yellon DM,Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction[J]. Basic Res Cardiol,2020,115(6):73. doi: 10.1007/s00395-020-00829-5
    [13] Zhang Y,Ying F,Tian X,et al. TRPM2 Promotes Atherosclerotic Progression in a Mouse Model of Atherosclerosis[J]. Cells,2022,11(9):1423.
    [14] Pacholec M,Bleasdale JE,Chrunyk B,et al. SRT1720,SRT2183,SRT1460,and resveratrol are not direct activators of SIRT1[J]. J Biol Chem,2010,285(11):8340-8351.
    [15] Farooqui Z,Mohammad RS,Lokhandwala MF,Banday AA. Nrf2 inhibition induces oxidative stress,renal inflammation and hypertension in mice[J]. Clin Exp Hypertens,2021,43(2):175-180. doi: 10.1080/10641963.2020.1836191
    [16] Libby P. The changing landscape of atherosclerosis[J]. Nature,2021,592(7855):524-533. doi: 10.1038/s41586-021-03392-8
    [17] Askin L,Tibilli H,Tanriverdi O,Turkmen S. The relationship between coronary artery disease and SIRT1 protein[J]. North Clin Istanb,2020,7(6):631-635.
    [18] Gerdes A M. Cardiomyocyte ultrastructure [M]. Muscle. Academic Press. 2012: 47-55.
    [19] Endale HT,Tesfaye W,Mengstie TA. ROS induced lipid peroxidation and their role in ferroptosis[J]. Front Cell Dev Biol,2023,11:1226044.
    [20] Fang X,Ardehali H,Min J,et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol,2023,20(1):7-23. doi: 10.1038/s41569-022-00735-4
    [21] Li J Y,Liu S Q,Yao R Q,et al. A novel insight into the fate of cardiomyocytes in ischemia-reperfusion injury: From iron metabolism to ferroptosis[J]. Front Cell Dev Biol,2021,9:799499. doi: 10.3389/fcell.2021.799499
    [22] Chen X,Yu C,Kang R,et al. Iron metabolism in ferroptosis[J]. Front Cell Dev Biol,2020,8:590226. doi: 10.3389/fcell.2020.590226
    [23] Ding K,Liu C,Li L,et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism[J]. Chin Med J (Engl),2023,136(21):2521-2537.
    [24] Ma T,Du J,Zhang Y,et al. GPX4-independent ferroptosis-a new strategy in disease's therapy[J]. Cell Death Discov,2022,8(1):434. doi: 10.1038/s41420-022-01212-0
    [25] Shen Y,Wang X,Shen X,et al. Geniposide possesses the protective effect on myocardial injury by inhibiting oxidative stress and ferroptosis via activation of the Grsf1/GPx4[J]. Axis. Front Pharmacol,2022,13:879870. doi: 10.3389/fphar.2022.879870
    [26] Tang D,Chen X,Kang R,et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res,2021,31(2):107-125. doi: 10.1038/s41422-020-00441-1
    [27] Sykiotis G P J A. Keap1/Nrf2 signaling pathway [Z]. MDPI. 2021: 828
    [28] Paramesha B,Anwar M S,Meghwani H,Maulik S K,Arava S K,Banerjee S K. Sirt1 and Sirt3 activation improved cardiac function of diabetic rats via modulation of mitochondrial function[J]. Antioxidants (Basel),2021,10(3):338.
  • [1] 朱菁菁, 裴晓蕾, 王会, 钱金桥.  右美托咪定的心脏保护作用机制及临床应用, 昆明医科大学学报.
    [2] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250407
    [3] 马承娅, 杨江, 陈曦, 徐茜, 尹丕轩, 舒芯, 彭红瑜, 范志祥, 龙莉.  髓过氧化物酶-463G/A基因多态性与彝族原发性高血压的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240408
    [4] 热则耶·麦麦提祖农, 李秀娟, 刘玲, 李卉.  铁死亡抑制因子KIF20A对食管癌细胞生物学行为及铁死亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240207
    [5] 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕.  铁死亡在心肌病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240327
    [6] 王东, 高必波, 孙会英, 冷登辉, 冉小平, 林文.  miR-216b-5p通过靶向NCOA3促进胶质母细胞瘤细胞铁死亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230805
    [7] 赵娟, 涂腾灿, 杨梅君, 张小勇, 潘伟.  急性冠状动脉综合征患者早期冠状动脉病变的评估, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211219
    [8] 王亚洲, 黄芩, 李小明, 张笃飞, 韦焘.  川崎病冠状动脉损害与发热持续时间的相关性, 昆明医科大学学报.
    [9] 周轩, 赵思斯.  冠状动脉慢性闭塞病变介入治疗的效果影响因素及门控核素心肌灌注显像技术的评估价值, 昆明医科大学学报.
    [10] 原斌.  缺血性心肌病经皮冠状动脉介入治疗对改善左心室功能、降低心血管事件发生率的作用, 昆明医科大学学报.
    [11] 戴青原.  冠心病患者血浆纤维蛋白原、血栓前体蛋白水平与冠状动脉病变程度的相关性, 昆明医科大学学报.
    [12] 张怡.  β2-受体激动剂治疗新生儿暂时性呼吸急促, 昆明医科大学学报.
    [13] 闵杰青.  昆明地区1 185例正常儿童冠状动脉内径的超声测量与分析, 昆明医科大学学报.
    [14] 秦敏丽.  RBP4与炎性因子水平对2型糖尿病下肢动脉病变的诊断价值, 昆明医科大学学报.
    [15] 马敏.  脉搏波传导速度与冠心病冠状动脉病变严重程度的相关性分析, 昆明医科大学学报.
    [16] 马敏.  早发冠心病危险因素与冠状动脉病变特点的临床分析, 昆明医科大学学报.
    [17] 杨芳.  急性下壁心肌梗死心电图表现与冠状动脉造影的对比分析, 昆明医科大学学报.
    [18] 彭民安.  NT-proBNP与冠状动脉病变严重程度的相关性, 昆明医科大学学报.
    [19] 彭民安.  NT-proBNP与冠状动脉病变严重程度的相关性, 昆明医科大学学报.
    [20] 踝臂指数与冠状动脉狭窄的相关性分析, 昆明医科大学学报.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  85
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 刊出日期:  2025-05-30

目录

    /

    返回文章
    返回