Citation: | Yuxin XIONG, Ying YANG. Research Progress of Diabetic Tubulopathy[J]. Journal of Kunming Medical University, 2023, 44(9): 148-154. doi: 10.12259/j.issn.2095-610X.S20230920 |
[1] |
Fineberg D,Jandeleit-Dahm K A,Cooper M E. Diabetic nephropathy: Diagnosis and treatment[J]. Nat Rev Endocrinol,2013,9(12):713-723. doi: 10.1038/nrendo.2013.184
|
[2] |
Huang S,Xu Y,Ge X,et al. Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway[J]. J Cell Physiol,2019,234(7):11200-11207. doi: 10.1002/jcp.27770
|
[3] |
Alicic R Z,Rooney M T,Tuttle K R. Diabetic kidney disease: Challenges,progress,and possibilities[J]. Clin J Am Soc Nephrol,2017,12(12):2032-2045. doi: 10.2215/CJN.11491116
|
[4] |
Yamanouchi M,Furuichi K,Hoshino J,et al. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: A propensity score-matched analysis of a nationwide,biopsy-based cohort study[J]. Diabetes Care,2019,42(5):891-902. doi: 10.2337/dc18-1320
|
[5] |
Pichaiwong W,Homsuwan W,Leelahavanichkul A. The prevalence of normoalbuminuria and renal impairment in type 2 diabetes mellitus[J]. Clin Nephrol,2019,92(2):73-80. doi: 10.5414/CN109606
|
[6] |
Lamacchia O,Viazzi F,Fioretto P,et al. Normoalbuminuric kidney impairment in patients with T1DM: Insights from annals initiative[J]. Diabetol Metab Syndr,2018,10(60):1-8.
|
[7] |
Chen J,Wang X,He Q,et al. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis[J]. Diabetes,2020,69(11):2446-2457. doi: 10.2337/db20-0579
|
[8] |
Zeni L,Norden A G W,Cancarini G,et al. A more tubulocentric view of diabetic kidney disease[J]. J Nephrol,2017,30(6):701-717. doi: 10.1007/s40620-017-0423-9
|
[9] |
Haraguchi R,Kohara Y,Matsubayashi K,et al. New insights into the pathogenesis of diabetic nephropathy: Proximal renal tubules are primary target of oxidative stress in diabetic kidney[J]. Acta Histochem Cytochem,2020,53(2):21-31. doi: 10.1267/ahc.20008
|
[10] |
Phillips A O,Steadman R,Morrisey K,et al. Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation[J]. Kidney Int,1997,52(4):973-984. doi: 10.1038/ki.1997.419
|
[11] |
Morrisey K,Steadman R,Williams J D,et al. Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent[J]. Kidney Int,1999,55(6):2548-2572.
|
[12] |
Perkovic V,Jardine M J,Neal B,et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med,2019,380(24):2295-2306. doi: 10.1056/NEJMoa1811744
|
[13] |
Neuen B L,Young T,Heerspink H J L,et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis[J]. Lancet Diabetes Endocrinol,2019,7(11):845-854. doi: 10.1016/S2213-8587(19)30256-6
|
[14] |
Cherney D Z I,Zinman B,Inzucchi S E,et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised,placebo-controlled trial[J]. Lancet Diabetes Endocrinol,2017,5(8):610-621. doi: 10.1016/S2213-8587(17)30182-1
|
[15] |
Yu S M,Leventhal J S,Cravedi P. Totally tubular,dude: Rethinking DKD pathogenesis in the wake of SGLT2i data[J]. J Nephrol,2021,34(3):629-631. doi: 10.1007/s40620-020-00868-0
|
[16] |
Lans H,Hoeijmakers J H. Genome stability,progressive kidney failure and aging[J]. Nat Genet,2012,44(8):836-838. doi: 10.1038/ng.2363
|
[17] |
Daroux M,Prevost G,Maillard-Lefebvre H,et al. Advanced glycation end-products: Implications for diabetic and non-diabetic nephropathies[J]. Diabetes Metab,2010,36(1):1-10. doi: 10.1016/j.diabet.2009.06.005
|
[18] |
Kumar Pasupulati A,Chitra P S,Reddy G B. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy[J]. Biomol Concepts,2016,7(5-6):293-309. doi: 10.1515/bmc-2016-0021
|
[19] |
Khalid M,Petroianu G,Adem A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives[J]. Biomolecules,2022,12(4):1-17.
|
[20] |
Sharma R,Sharma M,Reddy S,et al. Chronically increased intrarenal angiotensin II causes nephropathy in an animal model of type 2 diabetes[J]. Front Biosci,2006,1(11):968-976.
|
[21] |
Zhu Y,Cui H,Lv J,et al. Angiotensin II triggers RIPK3-MLKL-mediated necroptosis by activating the Fas/FasL signaling pathway in renal tubular cells[J]. PloS one,2020,15(3):1-19.
|
[22] |
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(5):R1009-R1022. doi: 10.1152/ajpregu.00809.2010
|
[23] |
Thomas M C,Burns W C,Cooper M E. Tubular changes in early diabetic nephropathy[J]. Adv Chronic Kidney Dis,2005,12(2):177-186. doi: 10.1053/j.ackd.2005.01.008
|
[24] |
Hashimoto Y,Yamagishi S,Mizukami H,et al. Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase[J]. J Diabetes Investig,2011,2(2):111-122. doi: 10.1111/j.2040-1124.2010.00071.x
|
[25] |
Najafian B, Crosson J T, Kim Y, et al. Glomerulotubular junction abnormalities are associated with proteinuria in type 1 diabetes[J]. J Am Soc Nephrol, 2006, 17 (4 Suppl 2): S53-S60.
|
[26] |
White K E,Marshall S M,Bilous R W. Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy[J]. Nephrol Dial Transplant,2008,23(11):3539-3545. doi: 10.1093/ndt/gfn351
|
[27] |
Vallon V,Thomson S C. Renal function in diabetic disease models: The tubular system in the pathophysiology of the diabetic kidney[J]. Annu Rev Physiol,2012,74(11):351-375.
|
[28] |
Tang S C W,Leung J C K,Lai K N. Diabetic tubulopathy: An emerging entity[J]. Contrib Nephrol,2011,170(6):124-134.
|
[29] |
Tang S C W,Yiu W H. Innate immunity in diabetic kidney disease[J]. Nat Rev Nephrol,2020,16(4):206-222. doi: 10.1038/s41581-019-0234-4
|
[30] |
Flyvbjerg A. The role of the complement system in diabetic nephropathy[J]. Nat Rev Nephrol,2017,13(5):311-318. doi: 10.1038/nrneph.2017.31
|
[31] |
Zhou W,Marsh J E,Sacks S H. Intrarenal synthesis of complement[J]. Kidney Int,2001,59(4):1227-1235. doi: 10.1046/j.1523-1755.2001.0590041227.x
|
[32] |
Wada T,Nangaku M. Novel roles of complement in renal diseases and their therapeutic consequences[J]. Kidney Int,2013,84(3):441-450. doi: 10.1038/ki.2013.134
|
[33] |
Afshar-Kharghan V. The role of the complement system in cancer[J]. J Clin Invest,2017,127(3):780-789. doi: 10.1172/JCI90962
|
[34] |
Braun M C,Reins R Y,Li T B,et al. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells[J]. J Immunol,2004,173(6):4190-4196. doi: 10.4049/jimmunol.173.6.4190
|
[35] |
de Vries B,Kohl J,Leclercq W K,et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils[J]. J Immunol,2003,170(7):3883-3889. doi: 10.4049/jimmunol.170.7.3883
|
[36] |
Liu F,Gou R,Huang J,et al. Effect of anaphylatoxin C3a,C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro[J]. Chin Med J (Engl),2011,124(23):4039-4045.
|
[37] |
Woroniecka K I,Park A S,Mohtat D,et al. Transcriptome analysis of human diabetic kidney disease[J]. Diabetes,2011,60(9):2354-2369. doi: 10.2337/db10-1181
|
[38] |
Zheng J M,Jiang Z H,Chen D J,et al. Pathological significance of urinary complement activation in diabetic nephropathy: A full view from the development of the disease[J]. J Diabetes Investig,2019,10(3):738-744. doi: 10.1111/jdi.12934
|
[39] |
Hansen T K. Mannose-binding lectin (MBL) and vascular complications in diabetes[J]. Horm Metab Res,2005,37(Suppl 1):95-98.
|
[40] |
Li X Q,Chang D Y,Chen M,et al. Complement activation in patients with diabetic nephropathy[J]. Diabetes Metab,2019,45(3):248-253. doi: 10.1016/j.diabet.2018.04.001
|
[41] |
Cai K,Ma Y,Wang J,et al. Mannose-binding lectin activation is associated with the progression of diabetic nephropathy in type 2 diabetes mellitus patients[J]. Ann Transl Med,2020,8(21):1-11.
|
[42] |
Huang Y,Xu J,Wu X,et al. High expression of complement components in the kidneys of type 2 diabetic rats with diabetic nephropathy[J]. Front Endocrinol (Lausanne),2019,10(7):1-9.
|
[43] |
Mise K,Hoshino J,Ueno T,et al. Prognostic value of tubulointerstitial lesions,urinary N-Acetyl-beta-d-glucosaminidase,and urinary beta2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy[J]. Clin J Am Soc Nephrol,2016,11(4):593-601. doi: 10.2215/CJN.04980515
|
[44] |
Han W K,Bailly V,Abichandani R,et al. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury[J]. Kidney Int,2002,62(1):237-244. doi: 10.1046/j.1523-1755.2002.00433.x
|
[45] |
Adachi T,Arito M,Suematsu N,et al. Roles of layilin in TNF-alpha-induced epithelial-mesenchymal transformation of renal tubular epithelial cells[J]. Biochem Biophys Res Commun,2015,467(1):63-69. doi: 10.1016/j.bbrc.2015.09.121
|
[46] |
Limonte C P,Valo E,Drel V,et al. Urinary proteomics identifies cathepsin D as a biomarker of rapid eGFR decline in type 1 diabetes[J]. Diabetes Care,2022,45(6):1416-1427. doi: 10.2337/dc21-2204
|
[47] |
Martin-Granado A,Vazquez-Moncholi C,Luis-Yanes M I,et al. Determination of clara cell protein urinary elimination as a marker of tubular dysfunction[J]. Pediatr Nephrol,2009,24(4):747-752. doi: 10.1007/s00467-008-1078-5
|
[48] |
Hibi Y,Uemura O,Nagai T,et al. The ratios of urinary beta2-microglobulin and NAG to creatinine vary with age in children[J]. Pediatr Int,2015,57(1):79-84. doi: 10.1111/ped.12470
|
[49] |
Nielsen S E,Sugaya T,Tarnow L,et al. Tubular and glomerular injury in diabetes and the impact of ACE inhibition[J]. Diabetes Care,2009,32(9):1684-1688. doi: 10.2337/dc09-0429
|
[50] |
Nielsen S E,Sugaya T,Hovind P,et al. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients[J]. Diabetes Care,2010,33(6):1320-1324. doi: 10.2337/dc09-2242
|
[51] |
Araki S,Haneda M,Koya D,et al. Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy[J]. Diabetes Care,2013,36(5):1248-1253. doi: 10.2337/dc12-1298
|
[52] |
Hong C Y,Chia K S. Markers of diabetic nephropathy[J]. J Diabetes Complications,1998,12(1):43-60. doi: 10.1016/S1056-8727(97)00045-7
|
[53] |
Lee M,Hong N,Lee Y H,et al. Elevated N-acetyl-beta-d-glucosaminidase,a urinary tubular damage marker,is a significant predictor of carotid artery atherosclerosis in type 1 diabetes,independent of albuminuria: A cross-sectional study[J]. J Diabetes Complications,2018,32(8):777-783. doi: 10.1016/j.jdiacomp.2018.05.019
|
[54] |
Kim S R,Lee Y H,Lee S G,et al. The renal tubular damage marker urinary N-acetyl-beta-D-glucosaminidase may be more closely associated with early detection of atherosclerosis than the glomerular damage marker albuminuria in patients with type 2 diabetes[J]. Cardiovasc Diabetol,2017,16(1):1-11. doi: 10.1186/s12933-016-0482-6
|
[55] |
Bouvet B R,Paparella C V,Arriaga S M,et al. Evaluation of urinary N-acetyl-beta-D-glucosaminidase as a marker of early renal damage in patients with type 2 diabetes mellitus[J]. Arq Bras Endocrinol Metabol,2014,58(8):798-801. doi: 10.1590/0004-2730000003010
|
[56] |
Yang W,Luo Y,Yang S,et al. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease[J]. Clin Sci (Lond),2018,132(22):2407-2422. doi: 10.1042/CS20180702
|
[57] |
Gala-Bladzinska A,Dumnicka P,Kusnierz-Cabala B,et al. Urinary neutrophil gelatinase-associated lipocalin is complementary to albuminuria in diagnosis of early-stage diabetic kidney disease in type 2 diabetes[J]. Biomed Res Int,2017,2017(8):1-8.
|
[58] |
Fu W J,Xiong S L,Fang Y G,et al. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: A cross-sectional study[J]. Endocrine,2012,41(1):82-88. doi: 10.1007/s12020-011-9509-7
|
[59] |
Duan S,Chen J,Wu L,et al. Assessment of urinary NGAL for differential diagnosis and progression of diabetic kidney disease[J]. J Diabetes Complications,2020,34(10):1-8.
|
[60] |
Tan A L,Sourris K C,Harcourt B E,et al. Disparate effects on renal and oxidative parameters following RAGE deletion,AGE accumulation inhibition,or dietary AGE control in experimental diabetic nephropathy[J]. American Journal of Physiology. Renal Physiology,2010,298(3):F763-F770. doi: 10.1152/ajprenal.00591.2009
|
[61] |
Zhao L,Gao H,Lian F,et al. (1)H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin[J]. American Journal of Physiology. Renal Physiology,2011,300(4):F947-F956. doi: 10.1152/ajprenal.00551.2010
|
[62] |
Blantz R C. Phenotypic characteristics of diabetic kidney involvement[J]. Kidney Int,2014,86(1):7-9. doi: 10.1038/ki.2013.552
|
[63] |
Coughlan M T,Nguyen T V,Penfold S A,et al. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes[J]. Clin Sci (Lond),2016,130(9):711-720. doi: 10.1042/CS20150838
|
[64] |
Jiang H,Shao X,Jia S,et al. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease[J]. Cell Physiol Biochem,2019,52(2):156-171. doi: 10.33594/000000011
|
[65] |
Kitada M,Kume S,Imaizumi N,et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway[J]. Diabetes,2011,60(2):634-643. doi: 10.2337/db10-0386
|
[66] |
Jha J C,Banal C,Chow B S,et al. Diabetes and kidney disease: Role of oxidative stress[J]. Antioxid Redox Signal,2016,25(12):657-684. doi: 10.1089/ars.2016.6664
|
[67] |
Nishikawa T,Edelstein D,Du X L,et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404(6779):787-790. doi: 10.1038/35008121
|
[68] |
Ogura Y,Kitada M,Xu J,et al. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD(+)/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats[J]. Aging (Albany NY),2020,12(12):11325-11336. doi: 10.18632/aging.103410
|
[69] |
Jeong H Y,Kang J M,Jun H H,et al. Chloroquine and amodiaquine enhance AMPK phosphorylation and improve mitochondrial fragmentation in diabetic tubulopathy[J]. Sci Rep,2018,8(1):1-13.
|
[70] |
Zheng X,Narayanan S,Xu C,et al. Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes[J]. Elife,2022,11(2):1-22.
|
[71] |
Liu X,Xu C,Xu L,et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway[J]. Metabolism,2020,111(10):1-10.
|
[1] | Man YANG, Xingan ZHAO, Yunna GE, Juan QIN, Xiya WANG, Siming TAO. Identification of Atrial Fibrillation-related Inflammatory Genes and Their Association with Immune Cell Infiltration Based on Comprehensive Bioinformatic Analysis. Journal of Kunming Medical University, 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303 |
[2] | Xiao CHEN. Development of Predictive Scale for Diabetic Kidney Disease Progression Based on Decision Tree Classification Model. Journal of Kunming Medical University, 2024, 45(8): 109-116. doi: 10.12259/j.issn.2095-610X.S20240816 |
[3] | Jing ZHOU, Linling LI, Haihong WANG, Yuqiong YANG. Effect and Psychological State of Triangle Hierarchical Management+LEARNS Model for Diabetes Nephropathy. Journal of Kunming Medical University, 2024, 45(4): 197-202. doi: 10.12259/j.issn.2095-610X.S20240429 |
[4] | Ling ZHAO, Hongling ZHONG, Xinru GAO, Mei LI, Tingting MAO, Rongyong LI, Tingyu KE. Clinical Observation of SGLT-2 Inhibitors in Delaying the Progression of Diabetic Nephropathy. Journal of Kunming Medical University, 2023, 44(5): 60-65. doi: 10.12259/j.issn.2095-610X.S20230527 |
[5] | Guo-qiang XUE, Xin-xin WEI, Na YAO, Wen-hua ZHAO. Metformin Protects Type II Diabetic Kidneys by Regulating PARP-1 Activity. Journal of Kunming Medical University, 2021, 42(6): 29-37. doi: 10.12259/j.issn.2095-610X.S20210632 |
[6] | Yi ZENG, Yun-juan LIAO, Ying LI, Zhen-kun HE. Efficacy of Dapagliflozin on Early Diabetic Nephropathy and Its Effect on Serum MCP-1 and IL-6. Journal of Kunming Medical University, 2021, 42(12): 41-46. doi: 10.12259/j.issn.2095-610X.S20211218 |
[7] | Zhang Zun Yue , Li Ping , Tang Li , Wang Kun Hua , Long Yan Xi , Wang Hua Wei . . Journal of Kunming Medical University, 2019, 40(01): 118-122. |
[8] | Xiang Xi . The Correlation between Vitamin D Receptor Gene FokI Single Nucleotide Polymorphism and Diabetic Kidney Disease. Journal of Kunming Medical University, |
[9] | Yang Dan . Effect of Paracrine Function of Mesenchymal Stem Cells on Diabetic Nephropathy. Journal of Kunming Medical University, |
[10] | Zhang Xi Jun . . Journal of Kunming Medical University, |
[11] | Xiang Xi . . Journal of Kunming Medical University, |
[12] | An Xin Huan . . Journal of Kunming Medical University, |
[13] | Li Hui Fang . . Journal of Kunming Medical University, |
[14] | Wang Xing Ning . . Journal of Kunming Medical University, |
[15] | Mao Wen Wen . . Journal of Kunming Medical University, |
[16] | Du Xing Hua . . Journal of Kunming Medical University, |
[17] | Lu Fang Li . . Journal of Kunming Medical University, |
[18] | Tang Li Li . . Journal of Kunming Medical University, |
[19] | . Protective Effect of α-Thioctic Acid on Early Type 2 Diabetics Nephropathy. Journal of Kunming Medical University, |
[20] | Li Mei Rui . . Journal of Kunming Medical University, |