Volume 44 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Chuntao LI, Xuemei ZHANG, Yandi SU, Jianqing Zhang. Construction of Stable Transfected Cell Line A549 of Non-small Cell Lung Cancer by Overexpressing and Knocking Down LncRNA RP11-521C20.3[J]. Journal of Kunming Medical University, 2023, 44(10): 1-9. doi: 10.12259/j.issn.2095-610X.S20231016
Citation: Chuntao LI, Xuemei ZHANG, Yandi SU, Jianqing Zhang. Construction of Stable Transfected Cell Line A549 of Non-small Cell Lung Cancer by Overexpressing and Knocking Down LncRNA RP11-521C20.3[J]. Journal of Kunming Medical University, 2023, 44(10): 1-9. doi: 10.12259/j.issn.2095-610X.S20231016

Construction of Stable Transfected Cell Line A549 of Non-small Cell Lung Cancer by Overexpressing and Knocking Down LncRNA RP11-521C20.3

doi: 10.12259/j.issn.2095-610X.S20231016
  • Received Date: 2022-12-13
    Available Online: 2023-09-12
  • Publish Date: 2023-10-25
  •   Objective  To construct stable transfected cell lines of non-small cell lung cancer A549 with overexpression and knockdown LncRNA RP11-521C20.3.   Methods  According to lncRNA RP11-521C20.3 gene sequence, primers were designed and amplified. The target gene was then connected to a vector that had been cleaved with Sbf I and EcoRI enzymes to construct the recombinant plasmid pcSLenti-pA-RP11-521C20.3-CMV-SFH-EGFP-P2A-Puro-WPRE. This plasmid was transfected into 293T cells to package the Lentivirus containing the lncRNA RP11-521C20.3 plasmid. An shRNA (RP11-521C20.3) was constructed and connected to the pSLenti-U6-shRNA-CMV-EGFP-F2A-Puro-WPRE vector after being modified with AgeI and EcoRI enzymes. This vector was then transfected into 293T cells after verification. Recombinant plasmids pcSLenti-pA-RP11-521C20.3-CMV-SFH-EGFP-P2A-Puro-WPRE and pSLenti-U6-shRNA (RP11-521C20.3)-CMV-EGFP-F2A-Puro-WPRE were then constructed using the lentivirus-mediated method and introduced into A549 cells. Finally, RT-qPCR technology was used to detect the expression of lncRNA RP11-521C20.3 at the gene level.   Results  The expression level of lncRNA RP11-521C20.3 mRNA in the OV-lncRNA RP11-521C20.3 group (overexpression group) was higher than that in the NC-lncRNA RP11-521C20.3 group (overexpression control group) (P < 0.001), with a fold change of (20.43±0.69). The expression level of lncRNA RP11-521C20.3 mRNA in the sh-lncRNA RP11-521C20.3 group (knockdown group) was lower than that in the sh-NC group (knockdown control group) (P < 0.001), with a fold change of (0.21±0.08).   Conclusion  In this study, a stable cell line with overexpression and knockdown of lncRNA RP11-521C20.3 was successfully constructed, which laid an important foundation for the subsequent study of the role of lncRNA RP11-521C20.3 in the pathogenesis of chronic obstructive pulmonary disease (COPD).
  • loading
  • [1]
    Perret J,Yip S W S,Idrose N S,et al. Undiagnosed and 'overdiagnosed' COPD using postbronchodilator spirometry in primary healthcare settings: A systematic review and meta-analysis[J]. BMJ Open Respir Res,2023,10(1):e001478. doi: 10.1136/bmjresp-2022-001478
    [2]
    Wilusz J E. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability[J]. Biochimbiophys acta,2016,1859(1):128-138.
    [3]
    Ard R,Allshire R C,Marquardt S. Emerging properties and functional consequences of noncoding transcription[J]. Genetics,2017,207(2):357-367.
    [4]
    Omote N,Sauler M. Non-coding RNAs as regulators of cellular senescence in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease[J]. Front Med (Lausanne),2020,7:603047. doi: 10.3389/fmed.2020.603047
    [5]
    Soares do Amaral N,Cruz E Melo N,de Melo Maia B,et al. Noncoding RNA profiles in tobacco- and alcohol-associated diseases[J]. Genes (Basel),2016,8(1):6. doi: 10.3390/genes8010006
    [6]
    Bamodu O A,Wu S M,Feng P H,et al. lnc-IL7R expression reflects physiological pulmonary function and its aberration is a putative indicator of COPD[J]. Biomedicines,2022,10(4):786. doi: 10.3390/biomedicines10040786
    [7]
    Li C,Liu H,Zhang J,et al. LncRNA BMF-AS1 exerts anti-apoptosis function in COPD by regulating BMF expression[J]. Pakistan Journal of Zoology,2020,52(3):893-900.
    [8]
    李玉珍. BMF促细胞凋亡研究进展[J]. 生物化学与生物物理进展,2017,44(9):751-756.
    [9]
    Guan R,Yao H,Li Z,et al. Sodium tanshinone IIA sulfonate attenuates cigarette smoke extract-induced mitochondrial dysfunction,oxidative stress,and apoptosis in alveolar epithelial cells by enhancing SIRT1 pathway[J]. Toxicol Sci,2021,183(2):352-362. doi: 10.1093/toxsci/kfab087
    [10]
    Roscioli E,Hamon R,Lester S E,et al. Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD[J]. Respir Res,2018,19(1):234. doi: 10.1186/s12931-018-0945-2
    [11]
    Lee K Y,Park S Y,Park S,et al. Progranulin protects lung epithelial cells from cigarette smoking-induced apoptosis[J]. Respirology,2017,22(6):1140-1148. doi: 10.1111/resp.13023
    [12]
    Hodge S,Hodge G,Holmes M,et al. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation[J]. Eurrespir J,2005,25(3):447-454.
    [13]
    Patel B D,Coxson H O,Pillai S G,et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease[J]. Am J Resp Crit Care,2008,178(5):500-505. doi: 10.1164/rccm.200801-059OC
    [14]
    Devadoss D,Long C,Langley R J,et al. Long noncoding transcriptome in chronic obstructive pulmonary disease[J]. Am J Resp Cell Mol,2019,61(6):678-688. doi: 10.1165/rcmb.2019-0184TR
    [15]
    Qiao X,Hou G,He Y L,et al. The novel regulatory role of the lncRNA-miRNA-mRNA axis in chronic inflammatory airway diseases[J]. Front Mol Biosci,2022,9:927549. doi: 10.3389/fmolb.2022.927549
    [16]
    Tang W,Shen Z,Guo J,et al. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD[J]. Int J Chron Obstruct Pulmon Dis,2016,11:2951-2964. doi: 10.2147/COPD.S109570
    [17]
    Bi H,Zhou J,Wu D,et al. Microarray analysis of long non-coding RNAs in COPD lung tissue[J]. Inflamm Res,2015,64(2):119-126. doi: 10.1007/s00011-014-0790-9
    [18]
    Ming X,Duan W,Yi W. Long non-coding RNA NEAT1 predicts elevated chronic obstructive pulmonary disease (COPD) susceptibility and acute exacerbation risk,and correlates with higher disease severity,inflammation,and lower miR-193a in COPD patients[J]. Int J Clin Exp Pathol,2019,12(8):2837-2848.
    [19]
    Gu C,Li Y,Liu J,et al. LncRNA-mediated SIRT1/FoxO3a and SIRT1/p53 signaling pathways regulate type II alveolar epithelial cell senescence in patients with chronic obstructive pulmonary disease[J]. Mol Med Rep,2017,15(5):3129-3134. doi: 10.3892/mmr.2017.6367
    [20]
    Yang L,Wu D,Chen J,et al. Corrigendum to: A functional CNVR_3425.1 damping lincRNA FENDRR increases lifetime risk of lung cancer and COPD in Chinese[J]. Carcinogenesis,2021,42(12):1506-1507. doi: 10.1093/carcin/bgab105
    [21]
    Liu P,Gao H,Wang Y,et al. LncRNA H19 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-181/PDCD4 Axis[J]. COPD,2023,20(1):119-125. doi: 10.1080/15412555.2023.2165906
    [22]
    Liu P, Zhang H, Zeng H, et al. LncRNA CASC2 is involved in the development of chronic obstructive pulmonary disease via targeting miR-18a-5p/IGF1 axis[J]. Ther Adv Respir Dis, 2021, 15: 17534666211028072.
    [23]
    孟凡荣,陈琛,万海粟,等. 慢病毒载体及其研究进展[J]. 中国肺癌杂志,2014,17(12):870-876.
    [24]
    Fischer S,Cassivi S D,Xavier A M,et al. Cell death in human lung transplantation: Apoptosis induction in human lungs during ischemia and after transplantation[J]. Ann Surg,2000,231(3):424-431. doi: 10.1097/00000658-200003000-00016
    [25]
    Morris D G,Huang X,Kaminski N,et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema[J]. Nature,2003,422(6928):169-173. doi: 10.1038/nature01413
  • Relative Articles

    [1] Caini ZHANG, Ya LI. A Meta-analysis of the Efficacy and Safety of Camrelizumab Combined with Chemotherapy in the Treatment of Non-small Cell Lung Cancer. Journal of Kunming Medical University, 2024, 45(6): 75-84.  doi: 10.12259/j.issn.2095-610X.S20240610
    [2] Chao HONG, Xudong XIANG, Yingfu LI, Yang CAO, Xueya CHEN, Shuai LI, Anhao XING, Mu LIN, Qianli MA. Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer. Journal of Kunming Medical University, 2024, 45(3): 7-17.  doi: 10.12259/j.issn.2095-610X.S20240302
    [3] Yan LIANG, Lei WANG, Ming LEI, Benchao CHEN, Ping SUN, Shuai LI, Li LIU, Qianrong WANG, Manlin LIAO, Qianli MA. Correlation between KRAS Gene Polymorphism and Non-small Cell Lung Cancer in Yunnan Han Population. Journal of Kunming Medical University, 2023, 44(2): 52-60.  doi: 10.12259/j.issn.2095-610X.S20230210
    [4] Yuxiao LI, Ming HE, Tianrong WANG, Yonggang YAO, Yu WANG. In Vitro Regulation of Th1/Th2 Cell of PBMCs in AR Mice by si-GATA-3. Journal of Kunming Medical University, 2022, 43(8): 7-16.  doi: 10.12259/j.issn.2095-610X.S20220802
    [5] Ying-xia WANG, Qin HE, Guo-fang WANG, Xuan ZHANG. Expression and Significance of microRNA-21 and EGFR in Non-small Cell Lung Cancer. Journal of Kunming Medical University, 2021, 42(8): 101-105.  doi: 10.12259/j.issn.2095-610X.S20210818
    [6] Wang Juan , Su Guo Miao , Pan Guo Qing , Bian Li , Yang Zhe , Zeng Ding Tao . . Journal of Kunming Medical University, 2020, 41(09): 1-6.
    [7] Xiao-biao MA, Feng LUO, Yong-liang GAO, Jing-chao HAO. Clinical Study of Chemotherapy Combined with CIK Cell Immunotherapy for Non-small Cell Lung Cancer. Journal of Kunming Medical University, 2020, 41(12): 60-67.  doi: 10.12259/j.issn.2095-610X.S20201215
    [8] Tang Shi Cong , Pan Hong , Huang Yao Yuan , Zhou Xin , Wang Shou Feng , Zuo Chuan Tian , Mao Nai Quan . . Journal of Kunming Medical University, 2017, 38(02): 28-32.
    [9] Ge Jia Yun . Effects of FHIT Overexpression Mediated by Slow Virus on the growth of Hepatoma Lines in Vitro. Journal of Kunming Medical University,
    [10] Zhou JieYan . . Journal of Kunming Medical University,
    [11] Zheng Zhi . . Journal of Kunming Medical University,
    [12] . The Comparison of Cell Viability between Xuanwei Lung Adenocarcinoma Cell Lines xwlc-05 and Cell Lines A549 in Vitro. Journal of Kunming Medical University,
    [13] . Growth Characteristics of Lung Adenocarcinoma Cell Lines A549 and Brdu Expression in Vitro. Journal of Kunming Medical University,
    [14] . Expression of GDNF,BDNF,NT3 and NT4 in Human Lung Adenocarcinoma Cell Lines A549. Journal of Kunming Medical University,
    [15] . Functional Implication and Expression of MBP in Lung Adenocarcinoma Cells A549. Journal of Kunming Medical University,
    [16] . Expression of APC and NeuN in Human Lung Adenocarcinoma Cell Lines A549. Journal of Kunming Medical University,
    [17] . Expression of GDNF and Changes of Cell Viability of Lung Adenocarcinoma Cell Lines A549. Journal of Kunming Medical University,
    [18] . Expression of study of Nestin in Lung Adenocarcinoma Cell Line A549. Journal of Kunming Medical University,
    [19] Yang Fang . . Journal of Kunming Medical University,
    [20] Zhang Lan Feng . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views (1805) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return