Hui-min WAN, Qing ZHOU. Effect of Continuing Motivational Interviewing on the Compliance of Diabetic Cataract Patients after Discharge from Day Surgery[J]. Journal of Kunming Medical University, 2020, 41(11): 165-170. doi: 10.12259/j.issn.2095-610X.S20201114
Citation: Zhixin YANG, Lizhu ZHAO, Yue DENG, Lihua YANG. Differential Diagnosis of Benign and Malignant Ovarian Tumors Based on Convolutional Neural Network[J]. Journal of Kunming Medical University, 2023, 44(10): 134-139. doi: 10.12259/j.issn.2095-610X.S20231027

Differential Diagnosis of Benign and Malignant Ovarian Tumors Based on Convolutional Neural Network

doi: 10.12259/j.issn.2095-610X.S20231027
  • Received Date: 2023-08-08
    Available Online: 2023-09-12
  • Publish Date: 2023-10-25
  •   Objective   To establish a convolutional neural network model for ultrasound diagnosis of ovarian tumors and explore its value in distinguishing between benign and malignant ovarian tumors.  Methods  A total of 400 ovarian tumor ultrasound images, including 200 benign and 200 malignant tumors, were collected from June 2015 to September 2022 at the Second Affiliated Hospital of Kunming Medical University. These images were confirmed by cytology or histopathology. The images were divided into a training set and a validation set in a 1∶3 ratio. Two diagnostic models, VGG16 and MobileNet-V2 were constructed based on convolutional neural networks for training and validation. A senior and a junior sonographers were selected to diagnose the ultrasound images in the training set. The performance of the two diagnostic models and the ultrasound doctors in distinguishing between benign and malignant ovarian tumors was evaluated using the pathological results as the gold standard.   Results  The sensitivity, specificity and accuracy of VGG16 model in diagnosing the benign and malignant nature of ovarian tumors were 80.67%, 79.33% and 80.00% respectively. The sensitivity, specificity and accuracy of MobileNet-V2 were 89.33%, 93.33% and 91.33% respectively. The MobileNet-V2 model had the best diagnostic performance, and both the MobileNet-V2 and VGG16 models had better diagnostic performance than ultrasound doctors (P < 0.05).   Conclusion  The convolutional neural network ovarian tumor diagnostic model has good diagnostic value, with the MobileNet-V2 model accurately determining the benign or malignant nature of ovarian tumor ultrasound images.
  • [1]
    狄文,胡媛. 卵巢癌的大数据研究[J]. 中国实用妇科与产科杂志,2018,34(1):18-22. doi: 10.19538/j.fk2018010105
    [2]
    Reid F,Bhatla N,Oza A M,et al. The World Ovarian Cancer Coalition Every Woman Study: Identifying challenges and opportunities to improve survival and quality of life[J]. Int J Gynecol Cancer,2021,31(2):238-244. doi: 10.1136/ijgc-2019-000983
    [3]
    La Vecchia C. Ovarian cancer: Epidemiology and risk factors[J]. Eur J Cancer Prev,2017,26(1):55-62. doi: 10.1097/CEJ.0000000000000217
    [4]
    张家雨,何昕晖,宫婷婷,等. 肉类摄入与卵巢癌发病及预后关系的研究进展[J]. 肿瘤防治研究,2019,46(5):490-496.
    [5]
    Trinidad C V,Tetlow A L,Bantis L E,et al. Reducing ovarian cancer mortality through early detection: Approaches using circulating biomarkers[J]. Cancer Prev Res (Phila),2020,13(3):241-252. doi: 10.1158/1940-6207.CAPR-19-0184
    [6]
    Kim G R,Lee E,Kim H R,et al. Convolutional neural network to stratify the malignancy risk of thyroid nodules: Diagnostic performance compared with the American college of radiology thyroid imaging reporting and data system implemented by experienced radiologists[J]. AJNR Am J Neuroradiol,2021,42(8):1513-1519. doi: 10.3174/ajnr.A7149
    [7]
    Hejduk P,Marcon M,Unkelbach J,et al. Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network[J]. Eur Radiol,2022,32(7):4868-4878. doi: 10.1007/s00330-022-08558-0
    [8]
    Mitrea D,Badea R,Mitrea P,et al. Hepatocellular carcinoma automatic diagnosis within CEUS and B-Mode ultrasound images using advanced machine learning methods[J]. Sensors (Basel),2021,21(6):1-31. doi: 10.1109/JSEN.2021.3057283
    [9]
    李睿,许祥丛,林静怡,等. 基于卷积神经网络的超声影像肝癌自动分类[J]. 生物化学与生物物理进展,2023,50(3):668-675. doi: 10.16476/j.pibb.2022.0101
    [10]
    曹宇,邢素霞,逄键梁,等. 基于改进的VGG-16卷积神经网络的肺结节检测[J]. 中国医学物理学杂志,2020,37(7):940-944. doi: 10.3969/j.issn.1005-202X.2020.07.026
    [11]
    高慧明. 基于卷积神经网络的肺结节检测及良恶性分类方法研究[D]. 太原: 太原理工大学, 2019.
    [12]
    Han Y,Ma Y,Wu Z,et al. Histologic subtype classification of non-small cell lung cancer using PET/CT images[J]. Eur J Nucl Med Mol Imaging,2021,48(2):350-360. doi: 10.1007/s00259-020-04771-5
    [13]
    Alshammari A. Construction of VGG16 convolution neural network (VGG16_CNN) classifier with NestNet-Based segmentation paradigm for brain metastasis classification[J]. Sensors (Basel),2022,22(20):1-19. doi: 10.1109/JSEN.2022.3211123
    [14]
    Altun S,Alkan A,Altun I. LSS-VGG16: Diagnosis of lumbar spinal stenosis with deep learning[J]. Clin Spine Surg,2023,36(5):E180-E190. doi: 10.1097/BSD.0000000000001418
    [15]
    刘雪纯,刘大铭,常佳鑫,等. 基于MobileNet V2迁移学习的中药材图像识别[J]. 长江信息通信,2022,35(7):33-37. doi: 10.3969/j.issn.1673-1131.2022.07.009
    [16]
    易振通,吴瑰,官端正,等. 轻量化卷积神经网络的研究综述[J]. 工业控制计算机,2022,35(10):109-111.
    [17]
    Palczynski K,Smigiel S,Gackowska M,et al. IoT application of transfer learning in hybrid artificial intelligence systems for acute lymphoblastic leukemia classification[J]. Sensors (Basel),2021,21(23):1-12. doi: 10.1109/JSEN.2021.3128120
    [18]
    Srinivasu P N,SivaSai J G,Ijaz M F,et al. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM[J]. Sensors (Basel),2021,21(8):1-27. doi: 10.1109/JSEN.2021.3063942
    [19]
    Yu C J,Yeh H J,Chang C C,et al. Lightweight deep neural networks for cholelithiasis and cholecystitis detection by point-of-care ultrasound[J]. Comput Methods Programs Biomed,2021,211:106382. doi: 10.1016/j.cmpb.2021.106382
    [20]
    Martinez-Mas J,Bueno-Crespo A,Khazendar S,et al. Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images[J]. PLoS One,2019,14(7):e219388.
  • Relative Articles

    [1] Ruicheng LI, Hongwei QIAN, Yanni FAN, Peipei ZHAO, Shan WEI, Huarong JING. Application of Logistic Regression and Artificial Neural Networks in the Differential Diagnosis of LC-MPE. Journal of Kunming Medical University, 2024, 45(10): 55-60.  doi: 10.12259/j.issn.2095-610X.S20241009
    [2] Li Fei Fei , Han Chang Nian , Liu Zhi Qin , Hao Jin Gang . . Journal of Kunming Medical University, 2019, 40(11): 87-91.
    [3] Wang Ya Mei . Quantitative Analysis of Malignant and Benign Ovarian Masses with Transvaginal Three-dimensional Power Doppler Ultrasound. Journal of Kunming Medical University,
    [4] Qiu Mei . Unnecessity of Integrating Metabolic Indices into the Diagnosis of Polycystic Ovary Syndrome. Journal of Kunming Medical University,
    [5] Lin Ken . Diagnosis and Treatment of 98 Children with Thyroglossal Duct Cyst. Journal of Kunming Medical University,
    [6] Ning Rong Ping . Prenatal Ultrasound Diagnosis and Misdiagnosis Analysis of Fetal Persistent Right Umbilical Vein. Journal of Kunming Medical University,
    [7] Ma Ju Xiang . . Journal of Kunming Medical University,
    [8] Zhu Ying Jie . . Journal of Kunming Medical University,
    [9] Liu Xi . . Journal of Kunming Medical University,
    [10] Gao Hong . . Journal of Kunming Medical University,
    [11] Lu Jian Fei . . Journal of Kunming Medical University,
    [12] Zhao Xing Yuan . . Journal of Kunming Medical University,
    [13] Zhang Li . . Journal of Kunming Medical University,
    [14] Yang Li Hua . . Journal of Kunming Medical University,
    [15] Wu Li Zhen . Value of High Frequency Ultrasound Parameters in Differential Diagnosis of Breast Phyllodes Tumor and Breast Fibroadenoma. Journal of Kunming Medical University,
    [16] Ma Kai Yu . . Journal of Kunming Medical University,
    [17] Chen Hai Tao . . Journal of Kunming Medical University,
    [18] Ma Jin Xia . . Journal of Kunming Medical University,
    [19] . Ultrasonographic Diagnosis and Misdiagnosis Analysis on Peripheral Neurilemmoma. Journal of Kunming Medical University,
    [20] Ma Yong Hong . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(15)

    1. 殷丽. 多形式集体宣教在白内障日间病房手术患者中的应用及对术后健康知识掌握情况的影响. 基层医学论坛. 2024(15): 102-104+144 .
    2. 谢驰,陈子盎,章尧,娄炜,金海鹰. 老年性白内障患者血糖与术后视力恢复的关联. 安徽理工大学学报(自然科学版). 2024(02): 94-100 .
    3. 付琴,祝青燕,邹霞,黄勇翔,刘悠. 结构化护理干预对老年白内障手术患者自我护理依从性的影响分析. 基层医学论坛. 2024(17): 70-73 .
    4. 刘媛,于莹,李景. 延续护理减少老年白内障手术患者术后并发症的效果评价. 中外医疗. 2024(19): 134-137 .
    5. 张杨,吕长芬. 延续性护理对2型糖尿病合并老年白内障患者术后的效果评价. 糖尿病新世界. 2024(12): 21-23 .
    6. 孙东洋. PDCA循环管理联合延续护理在老年白内障患者中的应用效果. 医药前沿. 2024(27): 95-97 .
    7. 徐燕,黄娟,马剑晴. 优质护理结合电话回访在老年白内障日间手术患者中的应用效果. 中西医结合护理(中英文). 2023(02): 21-24 .
    8. 朱文娟,赵久华,臧谋红,胡俊,杨丽. 医养结合视角下养老机构中延续护理对糖尿病患者的效果评价. 南通大学学报(医学版). 2023(02): 140-143 .
    9. 王瑞,张蓓,孙捷,和心依. 专科护士主导制定的围术期点药单对眼科日间手术患者用药依从性及眼科感染发生率的影响. 海南医学. 2023(12): 1793-1796 .
    10. 应莉,黄小建. 基于ADOPT问题解决模式的护理干预在老年性白内障超声乳化术患者中的应用效果. 当代护士(上旬刊). 2023(05): 128-132 .
    11. 袁雪,刘嫚. 流程化护理干预在眼科手术患者中的应用效果及对SAS、SDS评分的影响. 临床医学研究与实践. 2023(25): 162-165 .
    12. 龙皓,汤宁,应岚. 基于信息-动机-行为技巧模型构建健康教育在中青年慢性精神分裂症患者护理工作中的应用. 心理月刊. 2023(14): 71-74 .
    13. 刘民,陈玉春. 基于ADOPT问题解决模式护理干预对玻璃体切割术患者负性情绪、依从性及并发症的影响. 国际护理学杂志. 2023(21): 3903-3907 .
    14. 卢仪真. 健康教育联合CICARE沟通模式在眼科日间病房中的应用效果. 医学理论与实践. 2022(03): 505-506 .
    15. 张倩. 早期护理干预对缓解老年白内障手术患者术前焦虑的效果分析. 中国医药指南. 2021(30): 118-119 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1953) PDF downloads(21) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return