Yun ZHOU, Liu YANG, Xue-qing NA. Correlation Between Obesity and Oxygen Reserve during Induction of General Anesthsia[J]. Journal of Kunming Medical University, 2020, 41(11): 150-153. doi: 10.12259/j.issn.2095-610X.S20201130
Citation: Hang CHEN, Qi CUI, Minshan HUANG, Jianjun LIU, Lanqing MA. Research Progress of miRNA in Non-alcoholic Fatty Liver Disease[J]. Journal of Kunming Medical University, 2024, 45(1): 1-7. doi: 10.12259/j.issn.2095-610X.S20240101

Research Progress of miRNA in Non-alcoholic Fatty Liver Disease

doi: 10.12259/j.issn.2095-610X.S20240101
More Information
  • Corresponding author: 马岚青,医学博士,博士生导师,主任医师。现任昆明医科大学第一附属医院消化内科副主任(主持工作),昆明医科大学第一附属医院内科住院医师规范化培训基地主任,昆明医科大学第一附属医院内科教研室主任。美国加州大学圣地亚哥分校医学中心访问学者。中华医学会消化病学分会全国青年委员会委员;中华医学会消化病学分会肿瘤协助组委员;中国女医师协会消化病专业分会委员;云南省医院协会消化内科专业委员会主任委员;云南女医师协会消化病学分会主任委员;云南省医师协会消化医师分会副主任委员;云南省医学会消化病学分会委员;中国医师协会内镜医师培训学院导师。云南省中青年学术和技术带头人,云南省“万人计划”名医,云南省医学学科领军人才、带头人,云南省政府特殊津贴专家,国家自然科学基金评委。擅长消化内镜诊治技术如EMR/ESD/POEM/STER/EFTR、肝病、幽门螺杆菌感染性疾病及消化系统急、难、危重症诊治。主持4项国家自然科学基金及6项云南省自然科学基金项目,以第一作者及通讯作者发表SCI论文20余篇,总影响因子IF > 100,获国家级发明专利及新型实用专利5项,副主编及编委发表论著4部,获省级自然科学奖、科技进步奖一等奖、三等奖共5项。
  • Received Date: 2023-12-20
    Available Online: 2024-01-10
  • Publish Date: 2024-01-25
  • Nonalcoholic fatty liver disease(NAFLD) is the most common chronic liver disease, with a global prevalence of approximately 30.05% to 32.4%. It is closely associated with various other diseases. In recent years, microRNAs(miRNAs) have played a crucial role as non-invasive biomarkers in understanding the pathogenesis and diagnosis of NAFLD. miRNAs play significant roles in both lipid metabolism and insulin resistance, exerting specific regulatory functions in the development and progression of NAFLD. miRNAs are small RNA molecules that regulate the gene expression and protein synthesis by controlling the transcription and translation of target genes. This article provides a comprehensive overview of the roles and mechanisms of miRNAs in lipid metabolism, insulin resistance, and the occurrence and development of NAFLD.
  • [1]
    Rinella M E,Neuschwander-Tetri B A,Siddiqui M S,et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology,2023,77(5):1797-1835. doi: 10.1097/HEP.0000000000000323
    [2]
    Cotter T G,Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology,2020,158(7):1851-1864. doi: 10.1053/j.gastro.2020.01.052
    [3]
    Powell E E,Wong V W,Rinella M. Non-alcoholic fatty liver disease[J]. Lancet,2021,397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3
    [4]
    Younossi Z M,Golabi P,Paik J M,et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review[J]. Hepatology,2023,77(4):1335-1347. doi: 10.1097/HEP.0000000000000004
    [5]
    Riazi K,Azhari H,Charette J H,et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2022,7(9):851-861. doi: 10.1016/S2468-1253(22)00165-0
    [6]
    Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999–2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology,2019,4(5):389-398.
    [7]
    Saliminejad K,Khorram Khorshid H R,Soleymani Fard S,et al. An overview of microRNAs: Biology,functions,therapeutics,and analysis methods[J]. J Cell Physiol,2019,234(5):5451-5465. doi: 10.1002/jcp.27486
    [8]
    Shi Y,Liu Z,Lin Q,et al. MiRNAs and cancer: Key link in diagnosis and therapy[J]. Genes (Basel),2021,12(8):1289-1302. doi: 10.3390/genes12081289
    [9]
    Feng Y,Li J,Zhang Y. Chemical knockdown of microRNA with small-molecule chimeras[J]. Chembiochem,2020,21(22):3180-3185. doi: 10.1002/cbic.202000287
    [10]
    Chen P S,Lin S C,Tsai S J. Complexity in regulating microRNA biogenesis in cancer[J]. Exp Biol Med (Maywood),2020,245(5):395-401. doi: 10.1177/1535370220907314
    [11]
    Hill M,Tran N. miRNA interplay: Mechanisms and consequences in cancer[J]. Dis Model Mech,2021,14(4):1-4. doi: 10.1242/dmm.047662
    [12]
    Bartel D P. Metazoan microRNAs[J]. Cell,2018,173(1):20-51. doi: 10.1016/j.cell.2018.03.006
    [13]
    Jie M,Feng T,Huang W,et al. Subcellular localization of miRNAs and implications in cellular homeostasis[J]. Genes (Basel),2021,12(6):856. doi: 10.3390/genes12060856
    [14]
    Arguello G,Balboa E,Arrese M,et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta,2015,1852(9):1765-1778. doi: 10.1016/j.bbadis.2015.05.015
    [15]
    Pang L,Liu K,Liu D,et al. Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease[J]. Cell Death Dis,2018,9(2):90. doi: 10.1038/s41419-017-0136-y
    [16]
    Teratani T, Tomita K, Suzuki T, et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells[J]. Gastroenterology, 2012, 142(1): 152-164 e10
    [17]
    Pirola C J,Fernandez Gianotti T,Castano G O,et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis[J]. Gut,2015,64(5):800-812. doi: 10.1136/gutjnl-2014-306996
    [18]
    Laudadio I,Manfroid I,Achouri Y,et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation[J]. Gastroenterology,2012,142(1):119-129. doi: 10.1053/j.gastro.2011.09.001
    [19]
    Becker P P,Rau M,Schmitt J,et al. Performance of serum microRNAs -122,-192 and -21 as biomarkers in Patients with non-alcoholic steatohepatitis[J]. PLoS One,2015,10(11):e0142661. doi: 10.1371/journal.pone.0142661
    [20]
    Esau C,Davis S,Murray S F,et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab,2006,3(2):87-98. doi: 10.1016/j.cmet.2006.01.005
    [21]
    Krutzfeldt J,Rajewsky N,Braich R,et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature,2005,438(7068):685-689. doi: 10.1038/nature04303
    [22]
    Vega-Badillo J,Gutierrez-Vidal R,Hernandez-Perez H A,et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects[J]. Liver Int,2016,36(9):1383-1391. doi: 10.1111/liv.13109
    [23]
    Wu H,Ng R,Chen X,et al. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway[J]. Gut,2016,65(11):1850-1860. doi: 10.1136/gutjnl-2014-308430
    [24]
    Rodrigues P M,Afonso M B,Simao A L,et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J]. Cell Death Dis,2017,8(4):e2748. doi: 10.1038/cddis.2017.172
    [25]
    Sun C,Huang F,Liu X,et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. International Journal of Molecular Medicine,2015,35(3):847-853. doi: 10.3892/ijmm.2015.2076
    [26]
    Ahn J,Lee H,Jung C H,et al. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet[J]. Mol Nutr Food Res,2012,56(11):1665-74. doi: 10.1002/mnfr.201200182
    [27]
    Yang Y,Guo J X,Shao Z Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study[J]. Asian Pac J Trop Med,2017,10(1):87-91. doi: 10.1016/j.apjtm.2016.09.011
    [28]
    Lin Y,Ding D,Huang Q,et al. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2017,1862(9):869-882.
    [29]
    Borji M,Nourbakhsh M,Shafiee S M,et al. Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells[J]. Biochem Genet,2019,57(4):507-521. doi: 10.1007/s10528-019-09905-5
    [30]
    Ali O,Darwish H A,Eldeib K M,et al. miR-26a Potentially contributes to the regulation of fatty acid and sterol metabolism in vitro human hepG2 cell model of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev,2018,2018(1):8515343.
    [31]
    Xu Y,Zalzala M,Xu J,et al. A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism[J]. Nat Commun,2015,6(1):7466. doi: 10.1038/ncomms8466
    [32]
    Jia N,Lin X,Ma S,et al. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in gynostemma pentaphylla (Thunb. ) makino treated mice[J]. Nutr Metab (Lond),2018,15(1):86. doi: 10.1186/s12986-018-0323-6
    [33]
    Zeng N,Huang R,Li N,et al. MiR-451a attenuates free fatty acids-mediated hepatocyte steatosis by targeting the thyroid hormone responsive spot 14 gene[J]. Mol Cell Endocrinol,2018,474(1):260-271.
    [34]
    Zhang T,Zhao X,Steer C J,et al. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet[J]. Metabolism,2018,85(1):183-191.
    [35]
    Lei L,Zhou C,Yang X,et al. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease[J]. Clin Exp Pharmacol Physiol,2018,45(8):819-831. doi: 10.1111/1440-1681.12940
    [36]
    Guo J,Dou L,Meng X,et al. Hepatic miR-291b-3p mediated glucose metabolism by directly targeting p65 to upregulate PTEN expression[J]. Sci Rep,2017,7(1):39899. doi: 10.1038/srep39899
    [37]
    Xu L,Li Y,Yin L,et al. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3[J]. Theranostics,2018,8(20):5593-5609. doi: 10.7150/thno.27425
    [38]
    Jordan S D,Kruger M,Willmes D M,et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol,2011,13(4):434-446. doi: 10.1038/ncb2211
    [39]
    Yang W M,Min K H,Lee W. Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1[J]. PLoS One,2016,11(12):e0169039. doi: 10.1371/journal.pone.0169039
    [40]
    Jampoka K,Muangpaisarn P,Khongnomnan K,et al. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD)[J]. Microrna,2018,7(3):215-222. doi: 10.2174/2211536607666180531093302
    [41]
    Ramirez C M,Goedeke L,Rotllan N,et al. MicroRNA 33 regulates glucose metabolism[J]. Mol Cell Biol,2013,33(15):2891-2902. doi: 10.1128/MCB.00016-13
    [42]
    Garcia-Jacobo R E,Uresti-Rivera E E,Portales-Perez D P,et al. Circulating miR-146a,miR-34a and miR-375 in type 2 diabetes patients,pre-diabetic and normal-glycaemic individuals in relation to beta-cell function,insulin resistance and metabolic parameters[J]. Clin Exp Pharmacol Physiol,2019,46(12):1092-1100. doi: 10.1111/1440-1681.13147
    [43]
    Zhou M,Hou Y,Wu J,et al. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF[J]. Mol Med Rep,2021,23(5):329. doi: 10.3892/mmr.2021.11968
    [44]
    Santos D,Porter-Gill P,Goode G,et al. Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity[J]. Life Sci,2023,312(1):121246.
    [45]
    Dai L L,Li S D,Ma Y C,et al. MicroRNA-30b regulates insulin sensitivity by targeting SERCA2b in non-alcoholic fatty liver disease[J]. Liver Int,2019,39(8):1504-1513. doi: 10.1111/liv.14067
    [46]
    Zhang C,Wang P,Li Y,et al. Role of microRNAs in the development of hepatocellular carcinoma in nonalcoholic fatty liver disease[J]. Anat Rec (Hoboken),2019,302(2):193-200. doi: 10.1002/ar.23954
    [47]
    Torres J L,Novo-Veleiro I,Manzanedo L,et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J]. World J Gastroenterol,2018,24(36):4104-4118. doi: 10.3748/wjg.v24.i36.4104
    [48]
    Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70(4): 784-795
    [49]
    Zhang Z, Moon R, Thorne J L, et al. NAFLD and vitamin D: Evidence for intersection of microRNA-regulated pathways[J]. Nutr Res Rev, 2021,36(1): 1-20
    [50]
    Serino M. Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J]. J Mol Biol,2018,430(5):581-590. doi: 10.1016/j.jmb.2018.01.010
    [51]
    Gjorgjieva M,Sobolewski C,Dolicka D,et al. miRNAs and NAFLD: From pathophysiology to therapy[J]. Gut,2019,68(11):2065-2079. doi: 10.1136/gutjnl-2018-318146
    [52]
    Xin S,Zhan Q,Chen X,et al. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: A systematic review and meta-analysis[J]. BMC Gastroenterol,2020,20(1):186. doi: 10.1186/s12876-020-01334-8
    [53]
    Jonas W,Schurmann A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab,2021,50(1):101111.
    [54]
    Kiran S,Kumar V,Kumar S,et al. Adipocyte,immune cells,and miRNA crosstalk: A novel regulator of metabolic dysfunction and obesity[J]. Cells,2021,10(5):1004. doi: 10.3390/cells10051004
    [55]
    Shen Y,Cheng L,Xu M,et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis[J]. Metabolism,2023,146(1):155657.
    [56]
    Kan Changez M I, Mubeen M, Zehra M, et al. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A comprehensive review[J]. J Int Med Res, 2023, 51(9): 3000605231197058.
  • Relative Articles

    [1] Yuanyuan LI, Yaxian SONG, Yushan XU, Xiaofu ZENG, Hui YUAN, Zhao XU, Yan JIANG. The Association of Intestinal Flora Metabolite TMAO with Non-alcoholic Fatty Liver Disease. Journal of Kunming Medical University, 2024, 45(2): 77-84.  doi: 10.12259/j.issn.2095-610X.S20240210
    [2] Shaoyou DENG, Yulan ZHAO, Peijin WANG, Rong LI, Jintao LI, Hong ZHENG. Effects of Osteoking Combined with Antibiotic Cocktail on Insulin Resistance and Gut Flora in db/db Mice. Journal of Kunming Medical University, 2023, 44(5): 12-18.  doi: 10.12259/j.issn.2095-610X.S20230530
    [3] Xuemin ZHANG, Yunfen TIAN. Role of Abnormal Bile Acid Metabolism in the Development of Non-alcoholic Fatty Liver Disease. Journal of Kunming Medical University, 2023, 44(11): 164-169.  doi: 10.12259/j.issn.2095-610X.S20231125
    [4] Lu LI, Yunfen TIAN. Research Progress on Intestinal Microflora and Non-alcoholic Fatty Liver Disease in Children. Journal of Kunming Medical University, 2023, 44(7): 148-155.  doi: 10.12259/j.issn.2095-610X.S20230708
    [5] Xiaohong LI, Lin ZHAO, Xinwen ZHANG, Zhuo CHEN, Runmei MA. Analysis of Chemerin Expression and IRS-1 and Tyrosine Phosphorylation in Omental Adipose Tissue of GDM Pregnant Women. Journal of Kunming Medical University, 2022, 43(1): 48-52.  doi: 10.12259/j.issn.2095-610X.S20220140
    [6] Tianhong ZHANG, Hongju YANG. Research Progress of Exosomal miRNA in Hepatocellular Carcinoma. Journal of Kunming Medical University, 2022, 43(2): 150-153.  doi: 10.12259/j.issn.2095-610X.S20220221
    [7] Yongrui YANG, Liyuan WANG, Haiwen LI, Zhirong ZHAO, Rui PU, Guishuai WU, Shude LI. Scutellarin Ameliorates Liver Fibrosis in Nonalcoholic Fatty Liver Disease by Inhibiting NOX Expression. Journal of Kunming Medical University, 2022, 43(7): 38-45.  doi: 10.12259/j.issn.2095-610X.S20220721
    [8] Yong-fang XU, Na WU, Yue-xin HU, Yong-mei ZHAO, Shao-ding ZHENG, Ling WEI, Si-jia ZHENG, Jian-jun LIU. Therapeutic Effect of GW7647 on Non-alcoholic Fatty Liver Disease in Rats. Journal of Kunming Medical University, 2021, 42(8): 17-22.  doi: 10.12259/j.issn.2095-610X.S20210804
    [9] Jia YANG, Ya-xian LI, Ying-ying WANG, Lin XIAO, Chuan-yin LI, Fang TAN, Qian-li MA, Shu-yuan LIU. Association of the miR-149,miR-219 and miR-let-7 Polymorphisms with the Occurrence and Development of Non-small Cell Lung Cancer in a Chinese Han Population in Yunnan Province. Journal of Kunming Medical University, 2021, 42(10): 22-28.  doi: 10.12259/j.issn.2095-610X.S20211037
    [10] Fan Yi Dan , Chen Yu , Rao Chun Mei , Gao Xue Juan , Zhang Fang , Fang Shan Dan , Xiang Run Qing , Fan Yuan , Wu Yang . . Journal of Kunming Medical University, 2018, 39(11): 62-66.
    [11] Jiang Ting Ting . The Relationship Between Polycystic Ovary Syndrome and Vaspin,Apelin and Leptin. Journal of Kunming Medical University,
    [12] Gui Qi . Correlation of Apelin,Vaspin,Leptin with Endometrial Cancer. Journal of Kunming Medical University,
    [13] Bao Juan . . Journal of Kunming Medical University,
    [14] Fan Min Juan . . Journal of Kunming Medical University,
    [15] Bai Yong . . Journal of Kunming Medical University,
    [16] Shen Li Xin . . Journal of Kunming Medical University,
    [17] Li Ruo Nan . . Journal of Kunming Medical University,
    [18] Liu Shu Qing . . Journal of Kunming Medical University,
    [19] Qiu Hong Mei . . Journal of Kunming Medical University,
    [20] Gui Li . . Journal of Kunming Medical University,
  • Cited by

    Periodical cited type(7)

    1. 魏旭东. 体重对胸腔镜下肺叶切除术围手术期并发症的影响. 国际医药卫生导报. 2024(16): 2687-2690 .
    2. 陈小军,武建洪. 可视双腔支气管导管与普通双腔支气管导管在胸外科手术中的应用效果比较. 中国基层医药. 2024(11): 1689-1692 .
    3. 王超平,周旭,张继洛,陈森,张真真. 允许性高碳酸血症对沙滩椅位肩关节镜手术肥胖患者的影响. 世界临床药物. 2023(04): 362-367 .
    4. 杨运亮,谷昆峰,郁培佳,时建林,赵建辉,姜博. 七氟醚洗脱方式对肥胖患者腹腔镜手术苏醒期的影响. 河北医药. 2023(09): 1363-1365+1369 .
    5. 李旭,许莹,刘洁. 经鼻高流量氧疗预氧合在慢性阻塞性肺疾病患者心肺复苏后气管插管中的有效性. 中国医科大学学报. 2022(02): 121-124 .
    6. 安志勇,赵智慧. 肥胖患者全麻诱导期无通气安全时限的研究进展. 内蒙古医学杂志. 2022(09): 1092-1094+1099 .
    7. 史志国,韩毅,高广阔,王春,刘涛,曹晓曼,魏碧玉,刘伟. 可视双腔支气管导管在肥胖患者单肺通气中的应用效果观察. 实用临床医药杂志. 2021(10): 37-39+44 .

    Other cited types(3)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.0 %FULLTEXT: 35.0 %META: 64.8 %META: 64.8 %PDF: 0.2 %PDF: 0.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.0 %其他: 0.0 %China: 4.5 %China: 4.5 %Falkenstein: 0.1 %Falkenstein: 0.1 %Rochester: 0.0 %Rochester: 0.0 %[]: 0.0 %[]: 0.0 %上海: 13.6 %上海: 13.6 %东莞: 0.2 %东莞: 0.2 %丽水: 0.0 %丽水: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %北京: 15.0 %北京: 15.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.0 %南京: 0.0 %南充: 0.0 %南充: 0.0 %南通: 0.0 %南通: 0.0 %南阳: 0.0 %南阳: 0.0 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %台州: 0.0 %台州: 0.0 %吉安: 0.0 %吉安: 0.0 %周口: 0.0 %周口: 0.0 %和田: 0.0 %和田: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %安那罕: 0.0 %安那罕: 0.0 %安顺: 0.0 %安顺: 0.0 %宣城: 0.0 %宣城: 0.0 %常州: 0.0 %常州: 0.0 %广州: 0.0 %广州: 0.0 %庆阳: 0.0 %庆阳: 0.0 %弗吉: 0.0 %弗吉: 0.0 %张家口: 0.2 %张家口: 0.2 %德宏: 0.0 %德宏: 0.0 %恩施: 0.0 %恩施: 0.0 %成都: 0.0 %成都: 0.0 %扬州: 0.1 %扬州: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %杭州: 0.1 %杭州: 0.1 %武汉: 0.0 %武汉: 0.0 %沈阳: 0.0 %沈阳: 0.0 %沧州: 0.0 %沧州: 0.0 %泉州: 0.0 %泉州: 0.0 %泰州: 0.0 %泰州: 0.0 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.0 %济南: 0.0 %海口: 0.0 %海口: 0.0 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.0 %温州: 0.0 %湖州: 0.0 %湖州: 0.0 %漯河: 0.4 %漯河: 0.4 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.0 %珠海: 0.0 %石家庄: 0.1 %石家庄: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 1.9 %芒廷维尤: 1.9 %芝加哥: 0.1 %芝加哥: 0.1 %茂名: 0.0 %茂名: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 2.1 %西宁: 2.1 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.0 %贵阳: 0.0 %资阳: 0.0 %资阳: 0.0 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %青岛: 0.1 %青岛: 0.1 %马赛: 0.0 %马赛: 0.0 %驻马店: 53.2 %驻马店: 53.2 %其他其他ChinaFalkensteinRochester[]上海东莞丽水保定六安北京十堰南京南充南通南阳博阿努瓦台州吉安周口和田嘉兴大连天津安那罕安顺宣城常州广州庆阳弗吉张家口德宏恩施成都扬州无锡昆明杭州武汉沈阳沧州泉州泰州泸州洛阳济南海口海得拉巴淄博深圳温州湖州漯河漳州潍坊玉林珠海石家庄绍兴芒廷维尤芝加哥茂名蚌埠衢州西宁诺沃克贵港贵阳资阳赤峰运城邯郸郑州重庆长沙青岛马赛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1362) PDF downloads(68) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return