Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Chao HONG, Xudong XIANG, Yingfu LI, Yang CAO, Xueya CHEN, Shuai LI, Anhao XING, Mu LIN, Qianli MA. Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer[J]. Journal of Kunming Medical University, 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
Citation: Chao HONG, Xudong XIANG, Yingfu LI, Yang CAO, Xueya CHEN, Shuai LI, Anhao XING, Mu LIN, Qianli MA. Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer[J]. Journal of Kunming Medical University, 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302

Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer

doi: 10.12259/j.issn.2095-610X.S20240302
  • Received Date: 2023-12-14
    Available Online: 2024-03-12
  • Publish Date: 2024-03-30
  •   Objective   To investigate the association between four single nucleotide polymorphisms(SNP)(rs9340 in MAPK1, rs14804 in NRAS, rs712 and rs7973450 in KRAS) in the 3'UTR of ERK1/2 signaling pathway-related genes and non-small cell lung cancer(NSCLC).   Methods  A total of 478 NSCLC patients and 480 healthy controls were enrolled in this study. Four SNPs were genotyped by using TaqMan assays. The association between the four SNPs and NSCLC was analyzed.   Results  The distribution frequency difference of the allele of rs9340 was statistically significant between the control group and the non-small cell squamous cell carcinoma(SCC) group(P = 0.009), suggesting that the G allele of rs9340 may be a protective factor for non-small cell lung squamous cell carcinoma(OR = 0.67, 95%CI: 0.50~0.91). In addition, in the < 50 years age group, the distribution frequency difference of the allele of rs9340 was statistically significant between the control group and the NSCLC group(P = 5.07 × 10-4), indicating that the G allele of rs9340 may be a protective factor for NSCLC(OR = 0.46, 95%CI: 0.29~0.72).   Conclusion  The SNP rs9340 in MAPK1 may be associated with the risk of NSCLC.
  • loading
  • [1]
    Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660
    [2]
    Zheng R,Zhang S,Zeng H,et al. Cancer incidence and mortality in China,2016[J]. Journal of the National Cancer Center,2022,2(1):1-9. doi: 10.1016/j.jncc.2022.02.002
    [3]
    Nooreldeen R,Bach H. Current and future development in lung cancer diagnosis[J]. Int J Mol Sci,2021,22(16):8661. doi: 10.3390/ijms22168661
    [4]
    Cao W,Chen H D,Yu Y W,et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl),2021,134(7):783-791. doi: 10.1097/CM9.0000000000001474
    [5]
    Saller J J,Boyle T A. Molecular pathology of lung cancer[J]. Cold Spring Harb Perspect Med,2022,12(3):a037812. doi: 10.1101/cshperspect.a037812
    [6]
    Duma N,Santana-Davila R,Molina JR. Non-small cell lung cancer: Epidemiology,screening,diagnosis,and treatment[J]. Mayo Clin Proc,2019,94(8):1623-1640. doi: 10.1016/j.mayocp.2019.01.013
    [7]
    Zhang J,Chen S F,Zhen Y,et al. Multicenter analysis of lung cancer patients younger than 45 years in Shanghai[J]. Cancer,2010,116(15):3656-3662. doi: 10.1002/cncr.25100
    [8]
    Heist R S,Sequist L V,Engelman J A. Genetic changes in squamous cell lung cancer: a review[J]. J Thorac Oncol,2012,7(5):924-933. doi: 10.1097/JTO.0b013e31824cc334
    [9]
    Kim Y,Hammerman P S,Kim J,et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients[J]. J Clin Oncol,2014,32(2):121-128. doi: 10.1200/JCO.2013.50.8556
    [10]
    Niu Z,Jin R,Zhang Y,et al. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials[J]. Signal Transduct Target Ther,2022,7(1):353. doi: 10.1038/s41392-022-01200-x
    [11]
    Shi Q,Ruan J,Yang Y C,et al. rs66651343 and rs12909095 confer lung cancer risk by regulating CCNDBP1 expression[J]. PLoS One,2023,18(4):e0284347. doi: 10.1371/journal.pone.0284347
    [12]
    Anjum J,Mitra S,Das R,et al. A renewed concept on the MAPK signaling pathway in cancers: polyphenols as a choice of therapeutics[J]. Pharmacol Res,2022,184(2022):106398.
    [13]
    Qi M, Elion E A. MAP kinase pathways [J]. J Cell Sci, 2005, 118(Pt 16): 3569-3572.
    [14]
    Morrison D K. MAP kinase pathways[J]. Cold Spring Harb Perspect Biol,2012,4(11):a011254.
    [15]
    Keshet Y, Seger R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions[M]. //Seger R. MAP kinase signaling protocols. Second Edition. Totowa, NJ: Humana Press, 2010: 3-38.
    [16]
    Sinkala M,Nkhoma P,Mulder N,et al. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies[J]. Commun Biol,2021,4(1):9. doi: 10.1038/s42003-020-01552-6
    [17]
    Brennecke J,Stark A,Russell RB,et al. Principles of microRNA-target recognition[J]. PLoS Biol,2005,3(3):e85. doi: 10.1371/journal.pbio.0030085
    [18]
    Liu C J,Fu X,Xia M,et al. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets[J]. Nucleic Acids Research,2021,49(D1):D1276-D1281. doi: 10.1093/nar/gkaa783
    [19]
    Wu W,Wu L,Zhu M,et al. miRNA mediated noise making of 3'UTR mutations in cancer[J]. Genes (Basel),2018,9(11):545. doi: 10.3390/genes9110545
    [20]
    中华医学会,中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2018版)[J]. 中华肿瘤杂志,2018,40(12):30.
    [21]
    赫捷,李霓,陈万青,等. 中国肺癌筛查与早诊早治指南(2021,北京)[J]. 中国肿瘤,2021,30(02):81-111.
    [22]
    黄鼎智, 李琳, 李旭, 等.老年晚期肺癌内科治疗中国专家共识(2022版)[J].中国肺癌杂志, 2022, 25(06): 363-384.
    [23]
    Yang J,Yan Z,Wang Y,et al. Association study of relationships of polymorphisms in the miR-21,miR-26b,miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer[J]. BMC Cancer,2021,21(1):997. doi: 10.1186/s12885-021-08743-2
    [24]
    Shi Y Y,He L. SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci[J]. Cell Res,2005,15(2):97-98. doi: 10.1038/sj.cr.7290272
    [25]
    Lee J,Son M J,Son C Y,et al. Genetic Variation and Autism: A Field Synopsis and Systematic Meta-Analysis[J]. Brain Sci,2020,10(10):692. doi: 10.3390/brainsci10100692
    [26]
    Lake D,Corrêa S A,Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway[J]. Cell Mol Life Sci,2016,73(23):4397-413. doi: 10.1007/s00018-016-2297-8
    [27]
    Balmanno K,Cook S J. Tumour cell survival signalling by the ERK1/2 pathway[J]. Cell Death & Differentiation,2009,16(3):368-377.
    [28]
    Yan Z,Ohuchida K,Fei S,et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis[J]. BioMed Central,2019,38(1):221.
    [29]
    Marampon F,Ciccarelli C,Zani B M. Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate tumour responses to radiation[J]. Int J Mol Sci,2019,20(10):2530. doi: 10.3390/ijms20102530
    [30]
    Zhou B,Lin W,Long Y,et al. Notch signaling pathway: architecture,disease,and therapeutics[J]. Signal Transduct Target Ther,2022,7(1):95. doi: 10.1038/s41392-022-00934-y
    [31]
    Pino M S,Chung D C. The chromosomal instability pathway in colon cancer[J]. Gastroenterology,2010,138(6):2059-2072. doi: 10.1053/j.gastro.2009.12.065
    [32]
    Müller M F,Ibrahim A E,Arends M J. Molecular pathological classification of colorectal cancer[J]. Virchows Arch,2016,469(2):125-134. doi: 10.1007/s00428-016-1956-3
    [33]
    Ding L,Getz G,Wheeler D A,et al. Somatic mutations affect key pathways in lung adenocarcinoma[J]. Nature,2008,455(7216):1069-1075. doi: 10.1038/nature07423
    [34]
    Hill M,Tran N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech,2021,14(4):dmm047662. doi: 10.1242/dmm.047662
    [35]
    Zhu Z,Zhang F,Hu H,et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets[J]. Nat Genet,2016,48(5):481-487. doi: 10.1038/ng.3538
    [36]
    Fabian M R,Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC[J]. Nat Struct Mol Biol,2012,19(6):586-593. doi: 10.1038/nsmb.2296
    [37]
    Chan J J,Tabatabaeian H,Tay Y. 3'UTR heterogeneity and cancer progression[J]. Trends Cell Biol,2023,33(7):568-582. doi: 10.1016/j.tcb.2022.10.001
    [38]
    Sturgill T W,Ray L B,Erikson E,et al. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II[J]. Nature,1988,334(6184):715-718. doi: 10.1038/334715a0
    [39]
    AACR Project GENIE Consortium. AACR project GENIE: powering precision medicine through an international consortium[J]. Cancer Discov,2017,7(8):818-831. doi: 10.1158/2159-8290.CD-17-0151
    [40]
    Rubio K,Romero-Olmedo A J,Sarvari P,et al. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer[J]. Theranostics,2023,13(8):2384-2407. doi: 10.7150/thno.79493
    [41]
    Wang Y,Guo Z,Tian Y,et al. MAPK1 promotes the metastasis and invasion of gastric cancer as a bidirectional transcription factor[J]. BMC Cancer,2023,23(1):959. doi: 10.1186/s12885-023-11480-3
    [42]
    Zhu L,Yang S,Wang J. miR-217 inhibits the migration and invasion of HeLa cells through modulating MAPK1[J]. Int J Mol Med,2019,44(5):1824-1832.
    [43]
    Gagliardi M,Pitner M K,Park J,et al. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer[J]. Sci Rep,2020,10(1):8537. doi: 10.1038/s41598-020-65250-3
    [44]
    Guo N,Zhang N,Yan L,et al. Correlation between genetic polymorphisms within the MAPK1/HIF-1/HO-1 signaling pathway and risk or prognosis of perimenopausal coronary artery disease[J]. Clin Cardiol,2017,40(8):597-604. doi: 10.1002/clc.22708
    [45]
    Insodaite R,Smalinskiene A,Liutkevicius V,et al. Associations of polymorphisms localized in the 3'UTR regions of the KRAS,NRAS,MAPK1 genes with laryngeal squamous cell carcinoma[J]. Genes (Basel),2021,12(11):1679. doi: 10.3390/genes12111679
    [46]
    Hirsch F R,Scagliotti G V,Mulshine J L,et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet,2017,389(10066):299-311. doi: 10.1016/S0140-6736(16)30958-8
    [47]
    Kulasingam V,Diamandis E P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies[J]. Nat Clin Pract Oncol,2008,5(10):588-599. doi: 10.1038/ncponc1187
    [48]
    Chen W,Zheng R,Baade P D,et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132. doi: 10.3322/caac.21338
  • Relative Articles

    [1] Xueya CHEN, Jinmei XU, Zhi LI, Yan LIANG, Yufeng YAO, Fengquan HE, Zhiling YAN. The Association of HOXD-AS2 and MIR3142HG Gene Polymorphisms with Cervical Intraepithelial Neoplasia. Journal of Kunming Medical University, 2024, 45(11): 1-6.
    [2] Ni GUO, Cheng ZHANG, Chao HONG, Weipeng LIU, Yufeng YAO, Zhiling YAN. Correlation of KRAS Gene 3′ UTR Polymorphisms with Cervical Cancer and Cervical Intraepithelial Neoplasia in Chinese Han Population in Yunnan Province. Journal of Kunming Medical University, 2024, 45(2): 14-22.  doi: 10.12259/j.issn.2095-610X.S20240203
    [3] Caini ZHANG, Ya LI. A Meta-analysis of the Efficacy and Safety of Camrelizumab Combined with Chemotherapy in the Treatment of Non-small Cell Lung Cancer. Journal of Kunming Medical University, 2024, 45(6): 75-84.  doi: 10.12259/j.issn.2095-610X.S20240610
    [4] Zhixin NIU, Lihua TANG, Lei SHI, Chao HONG, Yufeng YAO, Zhiling YAN. Correlation of MAPK1 and NRAS Gene Polymorphisms with Cervical Intraepithelial Neoplasia in Yunnan Han Population. Journal of Kunming Medical University, 2024, 45(5): 8-15.  doi: 10.12259/j.issn.2095-610X.S20240502
    [5] Shujin LI, Yanfei YANG, Min SU, Yu LING, Yanqiong RAO, Jihua CUI. Single Nucleotide Polymorphisms in Children with Attention Deficit Hyperactivity Disorder Comorbid Emotion Problems. Journal of Kunming Medical University, 2023, 44(4): 139-147.  doi: 10.12259/j.issn.2095-610X.S20230420
    [6] Yunfang ZHANG, Shanshan ZHUANG, Yan YU, Zheng LI, Xiaoming WU, Xiaogai NIE. Correlation between PEAR1 Gene Polymorphisms and Ischemic Stroke. Journal of Kunming Medical University, 2023, 44(11): 135-139.  doi: 10.12259/j.issn.2095-610X.S20231120
    [7] Yan LIANG, Lei WANG, Ming LEI, Benchao CHEN, Ping SUN, Shuai LI, Li LIU, Qianrong WANG, Manlin LIAO, Qianli MA. Correlation between KRAS Gene Polymorphism and Non-small Cell Lung Cancer in Yunnan Han Population. Journal of Kunming Medical University, 2023, 44(2): 52-60.  doi: 10.12259/j.issn.2095-610X.S20230210
    [8] Tiantian CHENG, Wensa YIN, Jia WANG, Yumei LU, Xuanyu CHEN, Shengjie NIE, Linlin LIU. Association between TMTC1 Gene Polymorphisms and Schizophrenia. Journal of Kunming Medical University, 2023, 44(10): 161-167.  doi: 10.12259/j.issn.2095-610X.S20231014
    [9] Rongshuang WU, Jiangli PENG, Yonggang CHEN, Jie CHEN, Guowei MA, Xianrui LI, Xie LI, Chunhong YU. Associations between SLC2A9 Single Nucleotide Polymorphisms and Susceptibility to Pyrazinamide Induced Hyperuricemia. Journal of Kunming Medical University, 2023, 44(4): 40-47.  doi: 10.12259/j.issn.2095-610X.S20230409
    [10] Cong MEI, Xiao-chun WENG, Bao-kun PENG, Sui-jun YAN, Chun LI, Qiong ZHOU, Zhe TANG. Correlation between rs4580704 Polymorphism of CLOCL Gene and Type 2 Diabetes and Sleep Quality. Journal of Kunming Medical University, 2021, 42(3): 135-139.  doi: 10.12259/j.issn.2095-610X.S20210332
    [11] Jia YANG, Ya-xian LI, Ying-ying WANG, Lin XIAO, Chuan-yin LI, Fang TAN, Qian-li MA, Shu-yuan LIU. Association of the miR-149,miR-219 and miR-let-7 Polymorphisms with the Occurrence and Development of Non-small Cell Lung Cancer in a Chinese Han Population in Yunnan Province. Journal of Kunming Medical University, 2021, 42(10): 22-28.  doi: 10.12259/j.issn.2095-610X.S20211037
    [12] Xiao-hui RUAN, Qian XIANG, Yu-ming WANG, Zhi-han ZHOU, Xian ZHANG, Yan GUO, Xiao-rui YANG. The Correlation between Vitamin D Receptor Gene Bg1I and Cdx-2 Polymorphism and Hashimoto’ s Thyroiditis. Journal of Kunming Medical University, 2021, 42(8): 132-139.  doi: 10.12259/j.issn.2095-610X.S20210824
    [13] Dong-yun LI, Shun-kui GANG, Jie LI, Ming-xing ZHANG, Lei LI. Association of ABCG2,SLC2A9,SLC17A3 and PRKG2 SNPs Variants with Gout in the Hani Population in China. Journal of Kunming Medical University, 2021, 42(3): 54-60.  doi: 10.12259/j.issn.2095-610X.S20210320
    [14] Wang Juan , Su Guo Miao , Pan Guo Qing , Bian Li , Yang Zhe , Zeng Ding Tao . . Journal of Kunming Medical University, 2020, 41(09): 1-6.
    [15] Xiang Xi , Li Wan Bi , Zhang Xian , Liu Hua , Wang Yu Ming , Yang Cai , Bai Yun Xia . Correlation between Vitamin D Receptor (VDR) Gene ApaⅠ, BsmⅠ Single Nucleotide Polymorphism and Diabetic Kidney Disease in Type 2 Diabetic Patients. Journal of Kunming Medical University, 2017, 38(08): 79-85.
    [16] Xiang Xi . The Correlation between Vitamin D Receptor Gene FokI Single Nucleotide Polymorphism and Diabetic Kidney Disease. Journal of Kunming Medical University,
    [17] Hong Chao . The Correlation of CDH13 Gren Variation with Non-small Cell Lung Cancer. Journal of Kunming Medical University,
    [18] Liu Li Li . . Journal of Kunming Medical University,
    [19] Li Lan Jiang . . Journal of Kunming Medical University,
    [20] Wang Yan . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(7)

    Article Metrics

    Article views (890) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return