Volume 45 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Ruicheng LI, Hongwei QIAN, Yanni FAN, Peipei ZHAO, Shan WEI, Huarong JING. Application of Logistic Regression and Artificial Neural Networks in the Differential Diagnosis of LC-MPE[J]. Journal of Kunming Medical University, 2024, 45(10): 55-60. doi: 10.12259/j.issn.2095-610X.S20241009
Citation: Ruicheng LI, Hongwei QIAN, Yanni FAN, Peipei ZHAO, Shan WEI, Huarong JING. Application of Logistic Regression and Artificial Neural Networks in the Differential Diagnosis of LC-MPE[J]. Journal of Kunming Medical University, 2024, 45(10): 55-60. doi: 10.12259/j.issn.2095-610X.S20241009

Application of Logistic Regression and Artificial Neural Networks in the Differential Diagnosis of LC-MPE

doi: 10.12259/j.issn.2095-610X.S20241009
  • Received Date: 2024-05-20
    Available Online: 2024-11-07
  • Publish Date: 2024-10-31
  •   Objectives  To evaluate the application value of carcinoembryonic antigen (CEA), ferritin (FRT), neuron-specific enolase (NSE), squamous cell carcinoma-related antigen (SCC), carbohydrate antigen 50 (CA50), carbohydrate antigen 125 (CA125), and cytokeratin 19 fragment (CY21-1) in serum (S-) and pleural effusion (P-) for differentiating malignant pleural effusion of lung cancer (LC-MPE) from benign pleural effusion (BPE). We aim to establish a diagnostic model for LC-MPE using tumor markers and analyze the data using logistic regression and artificial neural network (ANN) techniques.   Methods   The serum and pleural effusion tumor marker results of patients with newly diagnosed LC-MPE and BPE were analyzed, and diagnostic models for LC-MPE were established using Logistic regression analysis and ANN technology.  Results   The indicators S-NSE, S-CY21-1, P-CEA, and P-NSE were selected and used for modeling. The Logistic regression model for diagnosing LC-MPE established in this study had a sensitivity of 93.23% and a specificity of 97.46%, with an area under the ROC curve of 0.992. The established ANN model had a sensitivity of 95.35%, a specificity of 97.22%, and an area under the ROC curve of 0.990 (P < 0.05).  Conclusions   In diagnosing LC-MPE through tumor markers, both the Logistic regression model and the ANN model established in this study showed good diagnostic efficacy. These two models can assist clinicians in improving diagnostic accuracy.
  • loading
  • [1]
    Kim N Y,Jang B,Gu K M,et al. Differential diagnosis of pleural effusion using machine learning[J]. Ann Am Thorac Soc,2024,21(2):211-217. doi: 10.1513/AnnalsATS.202305-410OC
    [2]
    Gonnelli F,Hassan W,Bonifazi M,et al. Malignant pleural effusion: current understanding and therapeutic approach[J]. Respir Res,2024,25(1):47. doi: 10.1186/s12931-024-02684-7
    [3]
    Han Y Q,Yan L,Li P,et al. A study investigating markers in pleural effusion (SIMPLE): A prospective and double-blind diagnostic study[J]. BMJ Open,2019,9(8):e27287.
    [4]
    Brun C,Gay P,Cottier M,et al. Comment from the authors: the tests combination in patients with lung cancer and malignant pleural effusion[J]. J Thorac Dis,2019,11(5):E74-E75. doi: 10.21037/jtd.2019.05.27
    [5]
    Liu Q,Yu Y X,Wang X J,et al. Diagnostic accuracy of interleukin-27 between tuberculous pleural effusion and malignant pleural effusion: A meta-analysis[J]. Respiration,2018,95(6):469-477. doi: 10.1159/000486963
    [6]
    Da C L V,Ribeiro-Alves M,Da S C R,et al. Predominance of Th1 immune response in pleural effusion of patients with tuberculosis among other exudative etiologies[J]. J Clin Microbiol,2019,58(1):e919-e927.
    [7]
    中华医学会呼吸病学分会胸膜与纵隔疾病学组. 胸腔积液诊断的中国专家共识[J]. 中华结核和呼吸杂志,2022,45(11):1080-1096. doi: 10.3760/cma.j.cn112147-20220511-00403
    [8]
    Gonnelli F,Hassan W,Bonifazi M,et al. Malignant pleural effusion: Current understanding and therapeutic approach[J]. Respir Res,2024,25(1):1-11. doi: 10.1186/s12931-023-02626-9
    [9]
    Wu Q,Li M,Zhang S,et al. Clinical diagnostic utility of CA 15-3 for the diagnosis of malignant pleural effusion: A meta-analysis[J]. Exp Ther Med,2015,9(1):232-238. doi: 10.3892/etm.2014.2039
    [10]
    Nguyen A H,Miller E J,Wichman C S,et al. Diagnostic value of tumor antigens in malignant pleural effusion: A meta-analysis[J]. Transl Res,2015,166(5):432-439. doi: 10.1016/j.trsl.2015.04.006
    [11]
    Charakorn C,Thadanipon K,Chaijindaratana S,et al. The association between serum squamous cell carcinoma antigen and recurrence and survival of patients with cervical squamous cell carcinoma: A systematic review and meta-analysis[J]. Gynecol Oncol,2018,150(1):190-200. doi: 10.1016/j.ygyno.2018.03.056
    [12]
    Ma Q,Liu W,Jia R,et al. Inflammation-based prognostic system predicts postoperative survival of esophageal carcinoma patients with normal preoperative serum carcinoembryonic antigen and squamous cell carcinoma antigen levels[J]. World J Surg Oncol,2016,141(14):1-6.
    [13]
    李锐成,郜赵伟,董轲,等. 胸腔积液与血清中的癌胚抗原及其比值对结核性与肺癌性胸腔积液的诊断价值[J]. 南方医科大学学报,2019,39(2):175-180.
    [14]
    Son S M,Han H S,An J Y,et al. Diagnostic performance of CD66c in lung adenocarcinoma-associated malignant pleural effusion: Comparison with CEA,CA 19-9,and CYFRA 21-1[J]. Pathology,2015,47(2):123-129. doi: 10.1097/PAT.0000000000000215
    [15]
    Shin Y M,Yun J,Lee O J,et al. Diagnostic value of circulating extracellular miR-134,miR-185,and miR-22 Levels in lung adenocarcinoma-associated malignant pleural effusion[J]. Cancer Res Treat,2014,46(2):178-185. doi: 10.4143/crt.2014.46.2.178
    [16]
    Abbas M,Kassim S A,Habib M,et al. Clinical evaluation of serum tumor markers in patients with advanced-stage non-small cell lung cancer treated with palliative chemotherapy in China[J]. Front Oncol,2020,10(6):1-12.
    [17]
    Heijnen B J,Bohringer S,Speyer R. Prediction of aspiration in dysphagia using logistic regression: oral intake and self-evaluation[J]. Eur Arch Otorhinolaryngol,2020,277(1):197-205. doi: 10.1007/s00405-019-05687-z
    [18]
    Chiou S H,Betensky R A,Balasubramanian R. The missing indicator approach for censored covariates subject to limit of detection in logistic regression models[J]. Ann Epidemiol,2019,38(10):57-64.
    [19]
    Teglia C M,Guinez M,Goicoechea H C,et al. Enhancement of multianalyte mass spectrometry detection through response surface optimization by least squares and artificial neural network modelling[J]. J Chromatogr A,2020,1611(40):460613.
    [20]
    Yogeswari M K,Dharmalingam K,Mullai P. Implementation of artificial neural network model for continuous hydrogen production using confectionery wastewater[J]. J Environ Manage,2019,252(20):109684.
    [21]
    Chen Y C,Chang Y C,Ke W C,et al. Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: An example for non-small cell lung cancer[J]. J Biomed Inform,2015,56(4):1-7.
    [22]
    Ligor T,Pater L,Buszewski B. Application of an artificial neural network model for selection of potential lung cancer biomarkers[J]. J Breath Res,2015,9(2):27106. doi: 10.1088/1752-7155/9/2/027106
  • Relative Articles

    [1] Jiang ZHANG, Xijuan ZHAO, Jiang WU, Bingkun YANG, Ni YANG, Liping ZHOU. Analysis of Frailty Status and Influencing Factors in Lung Cancer Patients Undergoing Radiotherapy. Journal of Kunming Medical University, 2024, 45(9): 1-8.
    [2] Ying WANG, Cong FU, Ying FU. Clinical Implications of Serum LDH,CysC,and PWR Level Detection in Lung Cancer Patients. Journal of Kunming Medical University, 2024, 45(4): 163-169.  doi: 10.12259/j.issn.2095-610X.S20240424
    [3] Hongbo ZHANG, Zhenlong LI, Ying LV, Yichao ZHANG, Xiangming QIU, Tingting HUANG. Comparison of Clinical Efficacy of Single-port and Double-port Video-assisted Thoracoscopic Lobectomy in the Treatment of Lung Cancer. Journal of Kunming Medical University, 2024, 45(4): 135-139.  doi: 10.12259/j.issn.2095-610X.S20240419
    [4] Yongchang LV, Wei LUO, Xugang ZHANG, Ran CAO, Ziqiang LI, Rong WANG, Qiying ZHENG, Yuekun LIU, Tingyan LIU, Jili YIN, Peipei DING, Kun WANG. Effect of Combined Intervention of Thoracic Surgery and Rehabilitation Department on Fast Track Surgery of Patients after Uniportal Video-assisted Thoracoscopic Surgery. Journal of Kunming Medical University, 2022, 43(10): 104-109.  doi: 10.12259/j.issn.2095-610X.S20221013
    [5] Yan WANG, Rong DING, Lvling ZHANG, Ruohua WANG, Xiaoling ZHAO, Na MA. Efficacy of Blood Transfusion Combined with Chemoradiotherapy in Patients with Colorectal Cancer and its Effect on Tumor Markers and T Lymphocyte Levels. Journal of Kunming Medical University, 2022, 43(8): 61-65.  doi: 10.12259/j.issn.2095-610X.S20220809
    [6] Lu YAO, Hui TAN, Yong-hua RUAN, Zhong-yi QIAN, Zhi-hong YANG, Rui RUAN, Qi-ying ZHANG, Ming-ting ZHOU, Xing-yin FANG. Application Value of Endobronchial Ultrasound-guided Transbronchial Needle Aspiration in Diagnosis of Space-occupying Lesions of Lung and Mediastinum. Journal of Kunming Medical University, 2021, 42(3): 41-48.  doi: 10.12259/j.issn.2095-610X.S20210311
    [7] Yan-fen MA, Jian HU, Ning ZHANG, Qian WU, Xiao-qin WANG. Changes and Abnormal Patterns of Coagulation Indicators in Patients with Lung Adenocarcinoma and Tuberculosis Pleural Effusion. Journal of Kunming Medical University, 2021, 42(10): 145-150.  doi: 10.12259/j.issn.2095-610X.S20211021
    [8] Wu Jiang Hai , Shu Jing Kui , Zhang Jian Qing , Feng Jia Gang , Jia Man , Liu Ling . . Journal of Kunming Medical University, 2019, 40(12): 103-107.
    [9] Luo Shao Lei , Ma Li Ju , Ma Teng Fei , Shao Wen Ping . Diagnostic Value of Combined Detection of Multiple Tumor Markers in Colorectal Cancer. Journal of Kunming Medical University, 2017, 38(10): 101-106.
    [10] Wang Hong . Role of Prostaglandin E2 in the Pathogenesis of COPD with Lung Cancer. Journal of Kunming Medical University,
    [11] Yang Shao Hua . . Journal of Kunming Medical University,
    [12] Pan Long Fang . . Journal of Kunming Medical University,
    [13] Shu Jing Kui . . Journal of Kunming Medical University,
    [14] Dang Yong . . Journal of Kunming Medical University,
    [15] Du Xing Hua . . Journal of Kunming Medical University,
    [16] Li Ding Biao . . Journal of Kunming Medical University,
    [17] Chen Jin Run . . Journal of Kunming Medical University,
    [18] Ma Jian Qiang . . Journal of Kunming Medical University,
    [19] Liang Yong Xue . . Journal of Kunming Medical University,
    [20] Rui Qiao An . . Journal of Kunming Medical University,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (372) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return