The Regulation of VEGF Signal Axis by DATS and the Improvement of Formation of Placental Angiogenesis in URSA Mice
-
摘要:
目的 探讨二烯丙基三硫醚(diallyl trisulfide,DATS)对不明原因反复自然流产(unexplained recurrent spontaneous abortion,URSA)小鼠胎盘血管生成的影响,并基于血管内皮细胞生成因子(vascular endothelial growth factor,VEGF)/血管内皮细胞生长因子受体2(vascular endothelial growth factor receptor 2 ,VEGFR-2)信号通路探索其作用机制。 方法 将16只URSA小鼠随机分为对照组与实验组,每组8只,实验组常规饲喂的同时给予纯度为98%的DATS,按照50 mg/(kg·d)配制成200 μL悬浊液进行灌胃;对照组常规饲喂的同时给予 200 μL PBS液灌胃。2组孕鼠连续给药18 d后,使用分光光度计检测胎盘组织中的硫化氢(hydrogen sulfide,H2S)含量,使用反转录酶-聚合酶链反应(RT-qPCR)检测胎盘组织中血小板-内皮细胞粘附分子(platelet endothelial cell adhesion molecule-1,CD31)、血管内皮生长因子A(vascular endothelial growth factor A,VEGFA)与VEGFR2的 mRNA相对表达量,并使用蛋白免疫印迹(Western blot)法检测胎盘组织中VEGFA与VEGFR2的蛋白表达水平。 结果 分光光度计检测结果显示:实验组(777.4922±72.9759) nmol/g H2S水平显著高于对照组(529.1824±99.7489) nmol/g (P < 0.05);RT-qPCR结果显示:实验组CD31的相对表达量(0.0042±0.0006)显著高于对照组(0.0020±0.0004)(P < 0.05)、实验组VEGFA的相对表达量(0.7073±0.0677)显著高于对照组(0.5200±0.0946)(P < 0.05)、实验组VEGFR2的相对表达量(0.7304±0.1262)显著高于对照组(0.3984±0.047)(P < 0.05);Western blot结果显示,DATS可显著提高胎盘组织中VEGFA和VEGFR2的蛋白表达水平(P < 0.05)。 结论 DATS可显著提高URSA胎盘组织中的H2S水平及胎盘组织中血管形成因子CD31、VEGFA及VEGFR2的相对表达量,并通过VEGF信号轴改善URSA小鼠胎盘血管的形成,将为DATS的临床应用提供一定的科学依据和参考价值。 Abstract:Objective The aim of this study is to investigate the effect of Diallyl trisulfide (DATS) on placental angiogenesis in mice with unexplained recurrent spontaneous abortion (URSA) and to explore its mechanism based on the vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR-2) signaling pathway. Methods Sixteen URSA mice selected were randomly divided into the control group and the experimental group, with 8 mice in each group. The experimental group was given 98% pure DATS (200 μL suspension prepared according to 50 mg/(kg·d) by gavage. The rats in the control group were fed conventionally and given 200 μL PBS solution by gavage. After 18 days of continuous administration, Hydrogen sulfide (H2S) content in the placental tissue was detected by spectrophotometer, and the relative expression of CD31, VEGFA and VEGFR2 mRNA in the placental tissue was detected by reverse transcriptase-polymerase chain reaction (RT-qPCR). The protein expression levels of VEGFA and VEGFR2 in placenta were detected by Western blot. Results The spectrophotometer detection showed that the H2S level in the experimental group (777.4922±72.9759) was significantly higher than that in the control group (529.1824±99.7489) (P < 0.05); The RT-qPCR results showed that the relative expression of CD31 in the experimental group (0.0042±0.0006) was significantly higher than that in the control group (0.0020±0.0004) (P < 0.05), the relative expression of VEGFA in the experimental group (0.7073±0.0677) was significantly higher than that in the control group (0.5200±0.0946)(P < 0.05), and the relative expression of VEGFR2 in the experimental group (0.7304±0.1262) was significantly higher than that in the control group (0.3984±0.047) (P < 0.05); Western blot results showed that DATS significantly increased the protein expression levels of VEGFA and VEGFR2 in placental tissue (P < 0.05). Conclusion DATS can significantly increase the level of H2S in URSA placental tissue and the relative expression levels of angiogenic factors CD31, VEGFA, and VEGFR2 in placental tissue. Through the VEGF signal axis, it can improve the formation of placental blood vessels in URSA mice. The relevant research results will provide scientific basis and reference value for the clinical application of DATS. -
Key words:
- DATS /
- VEGF signaling axis /
- URSA mice /
- Placental vessels
-
表 1 引物序列
Table 1. Primer sequences
基因名称 序列(5′→3′) 长度
(bp)PCR产物
长度(bp)ZNF470-F2 CCCCGGCAATCATAATGGAAA 21 95 ZNF470-R2 CTCCCTCTCAAACAAGTCTTCAC 23 ZNF545-F2 GACCTTTAGCCGTGGTTATCATC 23 88 ZNF545-R2 GGCTTTCCAGCATTCCTTACAT 22 GAPDH-F GGACCTGACCTGCCGTCTAG 20 100 GAPDH-R GTAGCCCAGGATGCCCTTGA 20 F:上游引物、正向;R:下游引物、反向。 -
[1] Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: A committee opinion[J]. Fertil Steril,2012,98(5):1103-1111. doi: 10.1016/j.fertnstert.2012.06.048 [2] Bender Atik R,Christiansen O B,Elson J,et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022[J]. Hum Reprod Open,2023,2023(1):hoad002. [3] Hong Li Y,Marren A. Recurrent pregnancy loss: A summary of international evidence-based guidelines and practice[J]. Aust J Gen Pract,2018,47(7):432-436. doi: 10.31128/AJGP-01-18-4459 [4] 中华医学会妇产科学分会产科学组,复发性流产诊治专家共识编写组,张建平,等. 复发性流产诊治专家共识(2022)[J]. 中华妇产科杂志,2022,57(9):653-667. doi: 10.3760/cma.j.cn112141-20220421-00259 [5] Muyayalo K P,Tao D,Lin X X,et al. Age-related changes in CD4+ T and NK cell compartments may contribute to the occurrence of pregnancy loss in advanced maternal age[J]. J Reprod Immunol,2023,155(2):103790. [6] Tise C G,Byers H M. Genetics of recurrent pregnancy loss: A review[J]. Curr Opin Obstet Gynecol,2021,33(2):106-111. doi: 10.1097/GCO.0000000000000695 [7] Park S J,Min J Y,Kang J S,et al. Chromosomal abnormalities of 19,000 couples with recurrent spontaneous abortions: A multicenter study[J]. Fertil Steril,2022,117(5):1015-1025. doi: 10.1016/j.fertnstert.2022.01.011 [8] Kim M A,Kim H S,Kim Y H. Reproductive,obstetric and neonatal outcomes in women with congenital uterine anomalies: A systematic review and meta-analysis[J]. J Clin Med,2021,10(21):4797. doi: 10.3390/jcm10214797 [9] Practice committees of the American society for reproductive medicine and the society for reproductive endocrinology and infertility. Diagnosis and treatment of luteal phase deficiency: A committee opinion[J]. Fertil Steril,2021,115(6):1416-1423. doi: 10.1016/j.fertnstert.2021.02.010 [10] 复发性流产合并风湿免疫病免疫抑制剂应用中国专家共识编写组,吕良敬,赵爱民,等. 复发性流产合并风湿免疫病免疫抑制剂应用中国专家共识[J]. 中华生殖与避孕杂志,2020,40(7):527-534. [11] 国家妇幼健康研究会生殖免疫学专业委员会专家共识编写组,赵爱民,韦相才. 复发性流产合并血栓前状态诊治中国专家共识[J]. 中华生殖与避孕杂志,2021,41(10):861-875. [12] 邓玉梅,宋家美,刘仲伟,等. 淋巴细胞免疫治疗次数对复发性流产的疗效观察[J]. 昆明医科大学学报,2019,40(10):150-153. doi: 10.3969/j.issn.1003-4706.2019.10.033 [13] Dakhly D M,Bayoumi Y A,Sharkawy M,et al. Intralipid supplementation in women with recurrent spontaneous abortion and elevated levels of natural killer cells[J]. Int J Gynaecol Obstet,2016,135(3):324-327. doi: 10.1016/j.ijgo.2016.06.026 [14] Deshmukh H,Way S S. Immunological basis for recurrent fetal loss and pregnancy complications[J]. Annu Rev Pathol,2019,14(1):185-210. doi: 10.1146/annurev-pathmechdis-012418-012743 [15] 王班琴. H2S通过干扰滋养细胞入侵及调控母胎界面TH1/TH2平衡影响早孕的相关作用机制研究[D]. 济南: 山东大学博士学位论文, 2021. [16] Guerra D D,Hurt K J. Gasotransmitters in pregnancy: From conception to uterine involution[J]. Biol Reprod,2019,101(1):4-25. doi: 10.1093/biolre/ioz038 [17] 熊佳. 二烯丙基三硫醚对妊娠肥胖母鼠繁殖性能和胎盘血管发育的影响[D]. 武汉: 华中农业大学硕士学位论文, 2020. [18] Wang M,Wang Z,Miao Y,et al. Diallyl trisulfide promotes placental angiogenesis by regulating lipid metabolism and alleviating inflammatory responses in obese pregnant mice[J]. Nutrients,2022,14(11):2230. doi: 10.3390/nu14112230 [19] 杜珂珂,严育宏,廖鸿力,等. 不明原因复发性流产伴慢性子宫内膜炎诊断方法和高危因素分析[J]. 中国妇幼保健,2022,37(22):4230-4233. doi: 10.19829/j.zgfybj.issn.1001-4411.2022.22.032 [20] Zhu L,Liu M,Zhang S,et al. Foxp3 TSDR Hypermethylation is correlated with decreased tregs in patients with unexplained recurrent spontaneous abortion[J]. Reprod Sci,2021,28(2):470-478. doi: 10.1007/s43032-020-00299-z [21] 刘乐乐,路玥,王涛,等. MiRNA在不明原因复发性流产中的作用[J]. 生命的化学,2021,41(3):471-477. doi: 10.13488/j.smhx.20200500 [22] Ravikumar G,Mukhopadhyay A,Mani C,et al. Placental expression of angiogenesis-related genes and their receptors in IUGR pregnancies: Correlation with fetoplacental and maternal parameters[J]. J Matern Fetal Neonatal Med,2020,33(23):3954-3961. doi: 10.1080/14767058.2019.1593362 [23] Lu L,Kingdom J,Burton G J,et al. Placental stem villus arterial remodeling associated with reduced hydrogen sulfide synthesis contributes to human fetal growth restriction[J]. Am J Pathol,2017,187(4):908-920. doi: 10.1016/j.ajpath.2016.12.002 [24] Li W,Chen P,Pan Y,et al. Construction of a band-aid like cardiac patch for myocardial infarction with controllable H2S release[J]. Adv Sci (Weinh),2022,9(35):e2204509. doi: 10.1002/advs.202204509 [25] Li M,Liu Y,Deng Y,et al. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review)[J]. Oncol Rep,2021,45(5):68. doi: 10.3892/or.2021.8019 [26] Matin M,Mörgelin M,Stetefeld J,et al. Affinity-enhanced multimeric VEGF (vascular endothelial growth factor) and PlGF (placental growth factor) variants for specific adsorption of sFlt-1 to restore angiogenic balance in preeclampsia[J]. Hypertension,2020,76(4):1176-1184. doi: 10.1161/HYPERTENSIONAHA.120.14974 [27] 刘鹏刚,刘彩虹,包文斌,等. 二花脸猪隐睾和正常睾丸组织学观察及PCNA/CD31蛋白差异表达分析[J]. 中国兽医科学,2023,53(3):388-395. doi: 10.16656/j.issn.1673-4696.2023.0036 [28] 夏士涛,王培宇,魏静,等. 海风藤醇提物抑制CD31因子对CSDH模型大鼠血肿外膜血管炎症影响的研究[J]. 中医药学报,2022,50(11):37-41. doi: 10.19664/j.cnki.1002-2392.220246 [29] Smink A M,Najdahmadi A,Alexander M,et al. The effect of a fast-releasing hydrogen sulfide donor on vascularization of subcutaneous scaffolds in immunocompetent and immunocompromised mice[J]. Biomolecules,2020,10(5):722. doi: 10.3390/biom10050722 [30] Guo X,Yi H,Li T C,et al. Role of vascular endothelial growth factor (VEGF) in human embryo implantation: Clinical implications[J]. Biomolecules,2021,11(2):253. doi: 10.3390/biom11020253 [31] 谢斌. CLEC14A通过VEGFA/VEGFR-2信号通路调控婴幼儿血管瘤内皮细胞增殖和血管生成的机制研究[D]. 南昌: 南昌大学博士学位论文, 2022.