留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为

秦瑞峰 薛佳栋 张佳 刘帆 张绍辉 尹立阳 袁增江

秦瑞峰, 薛佳栋, 张佳, 刘帆, 张绍辉, 尹立阳, 袁增江. SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为[J]. 昆明医科大学学报.
引用本文: 秦瑞峰, 薛佳栋, 张佳, 刘帆, 张绍辉, 尹立阳, 袁增江. SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为[J]. 昆明医科大学学报.
Ruifeng QIN, Jiadong XUE, Jia ZHANG, Fan LIU, Shaohui ZHANG, Liyang YIN, Zengjiang YUAN. Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer[J]. Journal of Kunming Medical University.
Citation: Ruifeng QIN, Jiadong XUE, Jia ZHANG, Fan LIU, Shaohui ZHANG, Liyang YIN, Zengjiang YUAN. Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer[J]. Journal of Kunming Medical University.

SKI通过ROS/JNK通路诱导铁死亡干预胰腺癌恶性行为

基金项目: 河北省医学科学研究课题计划(20220523)
详细信息
    作者简介:

    秦瑞峰(1977~),男,河北邯郸人,医学硕士,主任医师,主要从事肝胆外科研究工作

  • 中图分类号: R735.9

Shikonin Induces Ferroptosis through ROS/JNK Pathway to Intervene in the Malignant Behavior of Pancreatic Cancer

  • 摘要:   目的  探讨紫草素(Shikonin,SKI)能否通过ROS/JNK通路诱导铁死亡从而抑制胰腺癌恶性行为。  方法  选用人胰腺癌PANC-1细胞或BxPC-3细胞,药效实验设置空白组(Con组)、SKI低、中、高剂量组(2,4,8 μmol/L),JNK相关机制实验分为空白组(Con组)、SKI组(SKI组)、SKI+JNK抑制剂组(SKI+SP600125组),ROS相关机制实验分为空白组(Con组)、SKI组(SKI组)、SKI+ROS清除剂组(SKI+NAC组)。采用CCK-8法检测细胞活力并计算半数抑制浓度(IC50);Transwell实验评估细胞迁移与侵袭能力;使用C11 BODIPY 581/591探针通过流式细胞术检测脂质过氧化水平,FerroOrange荧光探针测定亚铁离子水平;活性氧检测试剂盒检测ROS水平;Western blot法检测铁死亡关键蛋白(SLC7A11、GPX4)、凋亡相关蛋白(Caspase3、PARP)及JNK通路蛋白(JNK、p-JNK)的表达;采用体内异种移植瘤模型检测体内肿瘤增殖情况。  结果  SKI处理可浓度依赖性和时间依赖性地显著抑制PANC-1细胞(IC50为6.04 μmol/L,P < 0.0001)和BxPC-3细胞(IC50为12.27 μmol/L,P < 0.0001)活力,并明显减少迁移和侵袭的细胞数(P < 0.0001),8 μmol/L SKI处理组迁移细胞数降至对照组的约30%(P < 0.0001)。机制上,SKI诱导细胞内脂质过氧化水平升高、Fe2+积累以及ROS大量生成(P < 0.0001),同时显著下调SLC7A11和GPX4的蛋白表达(GPX4蛋白表达降至对照组的40%,P < 0.0001),并激活JNK磷酸化(p-JNK/JNK比值增至2.8倍,P < 0.0001)。而使用JNK特异性抑制剂SP600125或ROS清除剂NAC预处理,均能有效逆转SKI对细胞活力的抑制或对SLC7A11/GPX4蛋白的下调作用(均P < 0.01)。SKI也能在体内抑制胰腺癌肿瘤细胞的增殖(P < 0.0001)。  结论  SKI通过激活ROS/JNK通路诱导铁死亡,进而抑制胰腺癌增殖、迁移与侵袭。
  • 图  1  SKI对PANC-1细胞活力和BxPC-3细胞的影响(n = 6)

    A:不同浓度SKI对PANC-1细胞的抑制效果;B:不同浓度SKI对BxPC-3细胞的抑制效果;C:不同时间点SKI对PANC-1细胞的抑制效果;D:不同时间点SKI对BxPC3细胞的抑制效果。

    Figure  1.  Effects of SKI on the viability of PANC-1 cells and BxPC-3 cells (n = 6)

    图  2  SKI对PANC-1细胞迁移和侵袭能力的影响(n = 5,×100)

    A:PANC-1细胞迁移和侵袭结果;B:PANC-1细胞迁移细胞数比较;C:PANC-1细胞侵袭细胞数比较;****P < 0.0001。

    Figure  2.  Effects of SKI on the migration and invasion of PANC-1 cells (n = 5,×100)

    图  3  PANC-1细胞内脂质过氧化水平的变化(n = 5)

    A:C11 BODIPY 581/591染色PANC-1细胞后流式细胞图;B: PANC-1细胞中脂质过氧化水平比较;**P < 0.01;****P < 0.0001。

    Figure  3.  Changes in lipid peroxidation levels in PANC-1 cells (n = 5)

    图  4  PANC-1细胞内亚铁离子水平的变化(n = 5)

    A:FerroOrange染色PANC-1细胞荧光图;B:PANC-1细胞铁离子含量比较;****P < 0.0001。

    Figure  4.  Changes in ferrous ion levels in PANC-1 cells (n = 5)

    图  5  PANC-1细胞内SLC7A11、GPX4、Caspase3、PARP蛋白表达水平(n = 5)

    A:SKI给药干预PANC-1细胞后Western blot效果图;B:SKI给药干预PANC-1细胞后SLC7A11相对表达水平;C:SKI给药干预PANC-1细胞后GPX4相对表达水平;D:SKI给药干预PANC-1细胞后Caspase3相对表达水平;E:SKI给药干预PANC-1细胞后PARP相对表达水平。****P < 0.0001;ns,no significance。

    Figure  5.  Expression levels of SLC7A11,GPX4,Caspase3,and PARP proteins in PANC-1 cells (n = 5)

    图  6  PANC-1细胞内ROS水平(n = 5,×100)

    A:DCFH-DA染色PANC-1细胞荧光图;B:PANC-1细胞ROS含量比较;****P < 0.0001。

    Figure  6.  ROS levels in PANC-1 cells (n = 5,×100)

    图  7  PANC-1细胞内p-JNK、JNK蛋白表达水平(n = 5)

    A:SKI给药干预PANC-1细胞后Western blot效果图;B:SKI给药干预PANC-1细胞后p-JNK/JNK相对表达水平;****P < 0.0001。

    Figure  7.  Expression levels of p-JNK and JNK proteins in PANC-1 cells (n = 5)

    图  8  抑制JNK后对SKI处理的PANC-1细胞活力的影响(n = 6)

    ****P < 0.0001。

    Figure  8.  Effect of JNK inhibition on the viability of SKI-treated PANC-1 cells (n = 6)

    图  9  抑制JNK后PANC-1细胞内SLC7A11、GPX4蛋白表达水平(n = 5)

    A:SP600125处理SKI给药干预的PANC-1细胞后Western blot效果图;B:PANC-1细胞中SLC7A11相对表达水平;C:PANC-1细胞中GPX4相对表达水平;*P < 0.05;****P < 0.0001;ns,no significance.

    Figure  9.  SLC7A11 and GPX4 protein expression levels in PANC-1 cells after JNK inhibition (n = 5)

    图  10  清除ROS后对SKI处理的PANC-1细胞活力的影响(n = 6)

    ****P < 0.0001。

    Figure  10.  Effect of ROS scavenging on the viability of PANC-1 cells treated with SKI (n = 6)

    图  11  SKI对裸鼠皮下移植瘤模型肿瘤的抑制作用(n = 6)

    A:裸鼠皮下移植瘤模型肿瘤图;B:肿瘤质量;***P < 0.001;****P < 0.0001。

    Figure  11.  SKI’s inhibitory effect on nude mouse subcutaneous transplanted tumor model (n = 6)

  • [1] Halbrook C J, Lyssiotis C A, Pasca di Magliano M, et al. Pancreatic cancer: Advances and challenges[J]. Cell, 2023, 186(8): 1729-1754. doi: 10.1016/j.cell.2023.02.014
    [2] Klein A P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 493-502. doi: 10.1038/s41575-021-00457-x
    [3] Yu B F, Shao S W, Ma W X. Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy[J]. Cancer Lett, 2025, 610: 217350. doi: 10.1016/j.canlet.2024.217350
    [4] Heinrich M A, Mostafa A M R H, Morton J P, et al. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models[J]. Adv Drug Deliv Rev, 2021, 174(2021): 265-293.
    [5] Grunwald B T, Devisme A, Andrieux G, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer[J]. Cell, 2021, 184(22): 5577-5592 e18.
    [6] Gupta T, Murtaza M. Advancing targeted therapies in pancreatic cancer: Leveraging molecular abberrations for therapeutic success[J]. Prog Biophys Mol Biol, 2025, 196: 19-32. doi: 10.1016/j.pbiomolbio.2025.02.003
    [7] Jiang X, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
    [8] Zheng J S, Conrad M. Ferroptosis: When metabolism meets cell death[J]. Physiol Rev, 2025, 105(2): 651-706. doi: 10.1152/physrev.00031.2024
    [9] Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4): 513-534. doi: 10.1016/j.ccell.2024.03.011
    [10] Cheng X F, Zhao F, Ke B X, et al. Harnessing ferroptosis to overcome drug resistance in colorectal cancer: Promising therapeutic approaches[J]. Cancers (Basel), 2023, 15(21): 5209-5216. doi: 10.3390/cancers15215209
    [11] Liu J, Kang R, Tang D L. The art of war: Ferroptosis and pancreatic cancer[J]. Front Pharmacol, 2021, 12: 773909. doi: 10.3389/fphar.2021.773909
    [12] Lyu H, Kong J H, Chen J S, et al. The emerging scenario of ferroptosis in pancreatic cancer tumorigenesis and treatment[J]. Int J Mol Sci, 2024, 25(24): 13334. doi: 10.3390/ijms252413334
    [13] Guo Y M, Zhou M M, Mu Z Z, et al. Recent advances in shikonin for the treatment of immune-related diseases: Anti-inflammatory and immunomodulatory mechanisms[J]. Biomedicine & Pharmacotherapy, 2023, 165: 115138.
    [14] Yadav S, Sharma A, Nayik G A, et al. Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology[J]. Front Pharmacol, 2022, 13: 905755. doi: 10.3389/fphar.2022.905755
    [15] Qi K, Li J Y, Hu Y, et al. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species[J]. Frontiers in Pharmacology, 2024, 15: 1416781. doi: 10.3389/fphar.2024.1416781
    [16] Dong H, Chang C D, Gao F, et al. The anti-leukemia activity and mechanisms of shikonin: A mini review[J]. Front Pharmacol, 2023, 14: 1271252. doi: 10.3389/fphar.2023.1271252
    [17] Wang B Q, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis[J]. Arch Toxicol, 2023, 97(6): 1439-1451. doi: 10.1007/s00204-023-03476-6
    [18] Zheng Y L, Liu F Y, Huang Y H, et al. SNORA58 facilitates radioresistance via suppressing JNK1-mediated ferroptosis in esophageal squamous cell carcinoma[J]. Adv Sci (Weinh), 2025, e08515.
    [19] Koeberle S C, Kipp A P, Stuppner H, et al. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling[J]. Med Res Rev, 2023, 43(3): 614-682. doi: 10.1002/med.21933
    [20] Tsai M F, Chen S M, Ong A Z, et al. Shikonin induced program cell death through generation of reactive oxygen species in renal cancer cells[J]. Antioxidants (Basel), 2021, 10(11): 1831-1844. doi: 10.3390/antiox10111831
    [21] Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action[J]. Eur J Med Chem, 2022, 235: 114314. doi: 10.1016/j.ejmech.2022.114314
    [22] Wu J J, Shi Y T, Zhou M, et al. Nutrient vitamins enabled metabolic regulation of ferroptosis via reactive oxygen species biology[J]. Front Pharmacol, 2024, 15: 1434088. doi: 10.3389/fphar.2024.1434088
    [23] Ye S Y, Hu X Y, Sun S W, et al. Oridonin promotes RSL3-induced ferroptosis in breast cancer cells by regulating the oxidative stress signaling pathway JNK/Nrf2/HO-1[J]. Eur J Pharmacol, 2024, 974: 176620. doi: 10.1016/j.ejphar.2024.176620
    [24] Qi H, Zhang X, Liu H H, et al. Shikonin induced apoptosis mediated by endoplasmic reticulum stress in colorectal cancer cells[J]. J Cancer, 2022, 13(1): 243-252. doi: 10.7150/jca.65297
    [25] Lee J H, Han S H, Kim Y M, et al. Shikonin inhibits proliferation of melanoma cells by MAPK pathway-mediated induction of apoptosis[J]. Biosci Rep, 2021, 41(1): BSR20203834. doi: 10.1042/BSR20203834
    [26] Kiraly J, Szabo E, Fodor P, et al. Shikonin causes an apoptotic effect on human kidney cancer cells through Ras/MAPK and PI3K/AKT pathways[J]. Molecules, 2023, 28(18): 6725. doi: 10.3390/molecules28186725
    [27] Liu S Y, Li L Y, Ren D M. Anti-cancer potential of phytochemicals: The regulation of the epithelial-mesenchymal transition[J]. Molecules, 2023, 28(13): 5069. doi: 10.3390/molecules28135069
  • [1] 朱菁菁, 裴晓蕾, 王会, 钱金桥.  右美托咪定的心脏保护作用机制及临床应用, 昆明医科大学学报. 2025, 46(8): 127-135. doi: 10.12259/j.issn.2095-610X.S20250817
    [2] 沈仕俊, 尹亚梅, 宋莉, 向春明, 李恒.  营养干预对局部晚期胰腺癌患者生活质量和生存预后的影响, 昆明医科大学学报. 2025, 46(4): 136-142. doi: 10.12259/j.issn.2095-610X.S20250418
    [3] 冯润林, 邓宗柒, 吴梦瑶, 王云娜, 王瑜, 刘桂兰, 陶燕萍.  GJB4基因在胰腺癌中的表达及其与患者临床病理特征的关系, 昆明医科大学学报. 2025, 46(1): 78-86. doi: 10.12259/j.issn.2095-610X.S20250110
    [4] 沈晓霞, 赵晓东, 宋永健.  SIRT1激动剂调控Nrf2-GPX4铁死亡途径改善冠状动脉病变小鼠心肌功能的作用及机制, 昆明医科大学学报. 2025, 46(5): 55-64. doi: 10.12259/j.issn.2095-610X.S20250507
    [5] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报. 2025, 46(4): 46-56. doi: 10.12259/j.issn.2095-610X.S20250407
    [6] 朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪.  MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析, 昆明医科大学学报. 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206
    [7] 曾庆彬, 徐蓉, 董文志, 陈志坚, 廖伟然, 龙奎.  锌指转录因子Sall4在胰腺癌中的表达及对细胞侵袭和迁移的影响, 昆明医科大学学报. 2024, 45(12): 42-48. doi: 10.12259/j.issn.2095-610X.S20241206
    [8] 热则耶·麦麦提祖农, 李秀娟, 刘玲, 李卉.  铁死亡抑制因子KIF20A对食管癌细胞生物学行为及铁死亡的影响, 昆明医科大学学报. 2024, 45(2): 49-56. doi: 10.12259/j.issn.2095-610X.S20240207
    [9] 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕.  铁死亡在心肌病中的研究进展, 昆明医科大学学报. 2024, 45(3): 180-185. doi: 10.12259/j.issn.2095-610X.S20240327
    [10] 刘思佳, 杨亚英, 彭超, 李亚敏.  增强CT及MRI检查在胰腺癌术前TNM分期中的应用, 昆明医科大学学报. 2023, 44(6): 107-112. doi: 10.12259/j.issn.2095-610X.S20230628
    [11] 王东, 高必波, 孙会英, 冷登辉, 冉小平, 林文.  miR-216b-5p通过靶向NCOA3促进胶质母细胞瘤细胞铁死亡, 昆明医科大学学报. 2023, 44(8): 44-52. doi: 10.12259/j.issn.2095-610X.S20230805
    [12] 杨永锐, 王丽媛, 李海雯, 赵智蓉, 普瑞, 吴贵帅, 李树德.  灯盏乙素抑制NOX的表达改善非酒精性脂肪性肝病肝脏纤维化的研究, 昆明医科大学学报. 2022, 43(7): 38-45. doi: 10.12259/j.issn.2095-610X.S20220721
    [13] 李京辉, 朱明, 曲海, 李秋宇, 吴玉娟, 杨贺英, 王郁竹, 李妍平.  miR-490-3p调控SW1990胰腺癌细胞上皮间充质转化, 昆明医科大学学报. 2021, 42(3): 10-17. doi: 10.12259/j.issn.2095-610X.S20210305
    [14] 李飞飞, 郝金钢.  IVIM-DWI定量参数对胰腺癌的诊断价值, 昆明医科大学学报. 2020, 41(04): 69-73.
    [15] 沈红, 汪秀云, 许辉琼, 刘霞.  274例胰腺癌临床病理特征及影响患者预后的危险因素, 昆明医科大学学报. 2019, 40(03): 97-101.
    [16] 雷喜锋, 刘韬, 董山潮, 杨少华, 张伟.  紫草素体外对人结肠癌生长抑制的作用, 昆明医科大学学报. 2019, 40(07): 19-24.
    [17] 王晔.  5-Aza-2'-dc预处理致敏百草枯对V79细胞活性氧及Bcl-2/Bax表达的影响, 昆明医科大学学报. 2016, 37(10): -.
    [18] 雷学芬.  立体定向放射治疗中晚期胰腺癌临床疗效观察, 昆明医科大学学报. 2015, 36(08): -1.
    [19] 缪玉兰.  凝血酶敏感蛋白-1对脓毒症肝损伤影响的实验研究, 昆明医科大学学报. 2012, 33(04): -.
    [20] 干扰CXCR4基因抑制胰腺癌经典Wnt通路活化的体外实验研究, 昆明医科大学学报. 2011, 32(11): -.
  • 加载中
图(11)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 网络出版日期:  2025-09-28

目录

    /

    返回文章
    返回