留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噬菌体在龋病防治中的研究进展

韩泽华 杨小燕 陈昱良 李雪林 杨镕羽 向盈盈

韩泽华, 杨小燕, 陈昱良, 李雪林, 杨镕羽, 向盈盈. 噬菌体在龋病防治中的研究进展[J]. 昆明医科大学学报.
引用本文: 韩泽华, 杨小燕, 陈昱良, 李雪林, 杨镕羽, 向盈盈. 噬菌体在龋病防治中的研究进展[J]. 昆明医科大学学报.
Zehua HAN, Xiaoyan YANG, Yuliang CHEN, Xuelin LI, Rongyu YANG, Yingying XIANG. Research Progress on Bacteriophage Prevention and Treatment of Dental Caries[J]. Journal of Kunming Medical University.
Citation: Zehua HAN, Xiaoyan YANG, Yuliang CHEN, Xuelin LI, Rongyu YANG, Yingying XIANG. Research Progress on Bacteriophage Prevention and Treatment of Dental Caries[J]. Journal of Kunming Medical University.

噬菌体在龋病防治中的研究进展

基金项目: 国家自然科学基金(82360189);云南省科技厅基础研究专项(202301AT070483);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202301AY070001-105);云南省高层次卫生健康技术人才培养专项(D2024005);大理大学第一附属医院第四批学科队伍建设项目(DFYYB2024016)
详细信息
    作者简介:

    韩泽华(1999~),男,云南大理人,在读硕士研究生,主要从事口腔临床工作

    通讯作者:

    向盈盈,E-mail:25591394@qq.com

  • 中图分类号: R78

Research Progress on Bacteriophage Prevention and Treatment of Dental Caries

  • 摘要: 龋病作为口腔最高发的疾病,主要由变形链球菌等致病菌代谢糖类产酸,导致牙体硬组织脱矿并形成龋损。若不及时干预,可引发牙髓炎、根尖周炎等局部并发症,甚至影响全身健康。抗生素在感染性和传染性疾病的治疗过程中发挥着极为关键的作用。然而,长期滥用抗生素导致全球范围严峻的耐药性问题。噬菌体疗法因其独特的抗菌优势和不产生细菌耐药性的特点备受关注,可作为替代抗生素的治疗手段。噬菌体疗法在清除致病细菌生物膜上具有巨大潜力,可预防龋病的发生和终止龋病的发展,且不破坏口腔中的正常菌群。通过介绍龋病、噬菌体及其基础特性、噬菌体疗法及其优势、变形链球菌噬菌体的发现、噬菌体疗法在龋病防治中的应用以及挑战与展望来概述噬菌体防治龋病的现状与前景,以期为龋病防治提供新的视角。
  • 图  1  噬菌体的两种生命周期

    Figure  1.  Two life cycles of bacteriophages

    图  2  裂解酶作用机制

    Figure  2.  Mechanism of action of endolysin

    图  3  噬菌体-抗生素协同作用机制

    Figure  3.  Synergistic mechanisms of phage–antibiotic therapy

  • [1] Yadav S, Kapley A. Antibiotic resistance: Global health crisis and metagenomics[J]. Biotechnol Rep, 2021, 29: e00604. doi: 10.1016/j.btre.2021.e00604
    [2] Gibb B P, Hadjiargyrou M. Bacteriophage therapy for bone and joint infections[J]. Bone Joint J, 2021, 103-B(2): 234-244.
    [3] Burrows L L. It’s uncomplicated: Prevention of urinary tract infections in an era of increasing antibiotic resistance[J]. PLoS Pathog, 2024, 20(2): e1011930. doi: 10.1371/journal.ppat.1011930
    [4] Suh G A, Ferry T, Abdel M P. Phage therapy as a novel therapeutic for the treatment of bone and joint infections[J]. Clin Infect Dis, 2023, 77(Suppl 5): S407-S415.
    [5] Simpson E A, MacLeod C S, Stacey H J, et al. The safety and efficacy of phage therapy for infections in cardiac and peripheral vascular surgery: A systematic review[J]. Antibiotics, 2023, 12(12): 1684. doi: 10.3390/antibiotics12121684
    [6] Barry M J, Nicholson W K, Silverstein M, et al. Screening and preventive interventions for oral health in adults: US preventive services task force recommendation statement[J]. JAMA, 2023, 330(18): 1773-1779. doi: 10.1001/jama.2023.21409
    [7] Peres M A, MacPherson L M D, Weyant R J, et al. Oral diseases: A global public health challenge[J]. Lancet, 2019, 394(10194): 249-260. doi: 10.1016/S0140-6736(19)31146-8
    [8] Hosseini Hooshiar M, Salari S, Nasiri K, et al. The potential use of bacteriophages as antibacterial agents in dental infection[J]. Virol J, 2024, 21(1): 258. doi: 10.1186/s12985-024-02510-y
    [9] Guo X, Wang X, Shi J, et al. A review and new perspective on oral bacteriophages: Manifestations in the ecology of oral diseases[J]. J Oral Microbiol, 2024, 16(1): 2344272. doi: 10.1080/20002297.2024.2344272
    [10] 李之心怡, 龚涛, 彭显, 等. 口腔噬菌体的研究进展[J]. 微生物学杂志, 2024, 44(4): 104-110.
    [11] 王粟萍, 陈学梅, 魏云林, 等. 纳帕海高原湿地噬藻体g20基因系统发育多样性分析[J]. 微生物学通报, 2021, 48(8): 2574-2582. doi: 10.13344/j.microbiol.china.201022
    [12] 曾祥朋, 杨清香. 噬菌体在环境耐药基因转移中的作用综述[J]. 江苏农业科学, 2019, 47(7): 14-18. doi: 10.15889/j.issn.1002-1302.2019.07.004
    [13] Uyttebroek S, Chen B, Onsea J, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review[J]. Lancet Infect Dis, 2022, 22(8): e208-e220. doi: 10.1016/S1473-3099(21)00612-5
    [14] 向盈盈. 难治性根尖周炎粪肠球菌噬菌体PEf771的分离鉴定及其抗感染研究[D]. 昆明: 昆明理工大学, 2019.
    [15] Xiang Y, Wang S, Huang H, et al. A novel endolysin from an Enterococcus faecalis phage and application[J]. Microb Pathog, 2024, 192: 106689. doi: 10.1016/j.micpath.2024.106689
    [16] Xiang Y, Wang S, Huang H, et al. A novel holin from an Enterococcus faecalis phage and application in vitro and in vivo[J]. Microb Pathog, 2024, 186: 106471. doi: 10.1016/j.micpath.2023.106471
    [17] Xiang Y, Yang R, Li X, et al. Phage PEf771 for the treatment of periapical periodontitis induced by Enterococcus faecalis YN771[J]. Crit Rev Immunol, 2024, 44(1): 41-53. doi: 10.1615/CritRevImmunol.2023050313
    [18] Xiang Y, Ma C, Yin S, et al. Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo[J]. Appl Microbiol Biotechnol, 2022, 106(5-6): 2121-2131. doi: 10.1007/s00253-022-11810-8
    [19] Pal N, Sharma P, Kumawat M, et al. Phage therapy: An alternative treatment modality for MDR bacterial infections[J]. Infect Dis, 2024, 56(10): 785-817. doi: 10.1080/23744235.2024.2379492
    [20] Kalia V C, Patel S K S, Gong C, et al. Re-emergence of bacteriophages and their products as antibacterial agents: An overview[J]. Int J Mol Sci, 2025, 26(4): 1755. doi: 10.3390/ijms26041755
    [21] Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota[J]. Antibiotics, 2019, 8(3): 131. doi: 10.3390/antibiotics8030131
    [22] Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it[J]. Molecules, 2020, 25(6): 1340. doi: 10.3390/molecules25061340
    [23] Khalifa L, Shlezinger M, Beyth S, et al. Phage therapy against Enterococcus faecalis in dental root canals[J]. J Oral Microbiol, 2016, 8: 32157. doi: 10.3402/jom.v8.32157
    [24] Brady J M, Gray W A, Caldwell M A. The electron microscopy of bacteriophage-like particles in dental plaque[J]. J Dent Res, 1977, 56(8): 991-993. doi: 10.1177/00220345770560082901
    [25] Van Der Ploeg J R. Genome sequence of Streptococcus mutans bacteriophage M102[J]. FEMS Microbiol Lett, 2007, 275(1): 130-138. doi: 10.1111/j.1574-6968.2007.00873.x
    [26] Delisle A L, Rostkowski C A. Lytic bacteriophages ofStreptococcus mutans[J]. Curr Microbiol, 1993, 27(3): 163-167. doi: 10.1007/BF01576015
    [27] 李雨含, 李嘉鑫, 张诗铭等, 变形链球菌噬菌体在龋病防治中的研究进展[J]. 口腔疾病防治, 2021, 29(03): 184-188.
    [28] Delisle A L, Guo M, Chalmers N I, et al. Biology and genome sequence of Streptococcus mutans phage M102AD[J]. Appl Environ Microbiol, 2012, 78(7): 2264-2271. doi: 10.1128/AEM.07726-11
    [29] Dalmasso M, de Haas E, Neve H, et al. Isolation of a novel phage with activity against Streptococcus mutans biofilms[J]. PLoS One, 2015, 10(9): e0138651. doi: 10.1371/journal.pone.0138651
    [30] Ben-Zaken H, Kraitman R, Coppenhagen-Glazer S, et al. Isolation and characterization of Streptococcus mutans phage as a possible treatment agent for caries[J]. Viruses, 2021, 13(5): 825. doi: 10.3390/v13050825
    [31] Sugai K, Kawada-Matsuo M, Nguyen-Tra Le M, et al. Isolation of Streptococcus mutans temperate bacteriophage with broad killing activity to S. mutans clinical isolates[J]. iScience, 2023, 26(12): 108465. doi: 10.1016/j.isci.2023.108465
    [32] 戴煦原. 变形链球菌生物膜在致龋过程中的作用及其机理研究[D]. 北京: 中国人民解放军医学院, 2019.
    [33] Wolfoviz-Zilberman A, Kraitman R, Hazan R, et al. Phage targeting Streptococcus mutans in vitro and in vivo as a caries-preventive modality[J]. Antibiotics, 2021, 10(8): 1015. doi: 10.3390/antibiotics10081015
    [34] Zhang Y, Peng X, Zhang H, et al. Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations[J]. Int J Pharm, 2018, 542(1-2): 1-7. doi: 10.1016/j.ijpharm.2018.02.023
    [35] Malik D J, Sokolov I J, Vinner G K, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy[J]. Adv Colloid Interface Sci, 2017, 249: 100-133. doi: 10.1016/j.cis.2017.05.014
    [36] Loeffler J M, Nelson D, Fischetti V A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase[J]. Science, 2001, 294(5549): 2170-2172. doi: 10.1126/science.1066869
    [37] Szafrański S P, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms[J]. J Biotechnol, 2017, 250: 29-44. doi: 10.1016/j.jbiotec.2017.01.002
    [38] Yang H, Linden S B, Wang J, et al. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method[J]. Sci Rep, 2015, 5: 17257. doi: 10.1038/srep17257
    [39] 徐晶晶, 陶庭亮, 李宇红. 一种噬菌体裂解酶的抗龋作用研究[J]. 口腔医学研究, 2018, 34(10): 1052-1056.
    [40] 徐晶晶. 嵌合裂解酶的重组表达及其抗菌作用研究[D]. 武汉: 武汉大学, 2018.
    [41] 赵晓苇, 陈方圆, 危宏平, 等. 噬菌体裂解酶LysP53漱口水的制备与评价[J]. 口腔医学研究, 2023, 39(6): 553-557. doi: 10.13701/j.cnki.kqyxyj.2023.06.016
    [42] Bhargava K, Nath G, Bhargava A, et al. Phage therapeutics: From promises to practices and prospectives[J]. Appl Microbiol Biotechnol, 2021, 105(24): 9047-9067. doi: 10.1007/s00253-021-11695-z
    [43] Saha D, Mukherjee R. Ameliorating the antimicrobial resistance crisis: Phage therapy[J]. IUBMB Life, 2019, 71(7): 781-790. doi: 10.1002/iub.2010
    [44] Tagliaferri T L, Jansen M, Horz H P. Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy[J]. Front Cell Infect Microbiol, 2019, 9: 22. doi: 10.3389/fcimb.2019.00022
    [45] Shlezinger M, Coppenhagen-Glazer S, Gelman D, et al. Eradication of vancomycin-resistant enterococci by combining phage and vancomycin[J]. Viruses, 2019, 11(10): 954. doi: 10.3390/v11100954
    [46] Joo H, Wu S M, Soni I, et al. Phage and antibiotic combinations reduce Staphylococcus aureus in static and dynamic biofilms grown on an implant material[J]. Viruses, 2023, 15(2): 460. doi: 10.3390/v15020460
    [47] 曾堃. 耐药粪肠球菌致根尖周炎的噬菌体-抗生素联合治疗研究[D]. 昆明: 昆明理工大学, 2024.
    [48] Górski A, Międzybrodzki R, Borysowski J, et al. Phage as a modulator of immune responses: Practical implications for phage therapy[J]. Adv Virus Res, 2012, 83: 41-71.
    [49] Walsh L, Johnson C N, Hill C, et al. Efficacy of phage- and bacteriocin-based therapies in combatting nosocomial MRSA infections[J]. Front Mol Biosci, 2021, 8: 654038. doi: 10.3389/fmolb.2021.654038
    [50] Berkson J D, Wate C E, Allen G B, et al. Phage-specific immunity impairs efficacy of bacteriophage targeting Vancomycin Resistant Enterococcus in a murine model[J]. Nat Commun, 2024, 15(1): 2993. doi: 10.1038/s41467-024-47192-w
    [51] Chen J, Quiles-Puchalt N, Chiang Y N, et al. Genome hypermobility by lateral transduction[J]. Science, 2018, 362(6411): 207-212. doi: 10.1126/science.aat5867
    [52] Yuan Y, Wang L, Li X, et al. Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii[J]. Virus Res, 2019, 272: 197734. doi: 10.1016/j.virusres.2019.197734
    [53] Yu L, Wang S, Guo Z, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli[J]. Appl Microbiol Biotechnol, 2018, 102(2): 971-983. doi: 10.1007/s00253-017-8591-z
    [54] 周路路, 曹荷清, 欧维正, 等. 贵阳市2018—2021年83株临床分离非结核分枝杆菌的菌种分布及流行情况[J]. 贵州医科大学学报, 2024, 49(10): 1464-1470.
    [55] 王佳妮, 周殿友, 武丽娟. 肠道菌群在类风湿关节炎研究中的应用进展[J]. 河北医科大学学报, 2025, 46(02): 235-240.
    [56] 韩经定, 符喜菊, 王正安, 等. 吸烟对慢性牙周炎患者的炎症因子和骨代谢及氧化应激的影响[J]. 贵州医科大学学报, 2024, 49(11): 1687-1692+1698.
  • [1] 韩泽华, 杨小燕, 陈昱良, 李雪林, 杨镕羽, 向盈盈.  噬菌体在龋病防治中的研究进展, 昆明医科大学学报. 2026, 47(): 1-8.
    [2] 董越虹, 赵昱, 况轶群, 贾杰.  肺炎链球菌感染小鼠CD4+ T淋巴细胞亚群特征及功能分析, 昆明医科大学学报. 2025, 46(6): 46-53. doi: 10.12259/j.issn.2095-610X.S20250606
    [3] 李雪林, 杨小燕, 韩泽华, 陈昱良, 徐兴源, 张春燕, 向盈盈.  噬菌体联合抗生素疗法的协同作用机制及应用进展, 昆明医科大学学报. 2025, 46(12): 1-8. doi: 10.12259/j.issn.2095-610X.S20251201
    [4] 孙娅红, 杨晓钰, 郑瑞.  噬菌体治疗碳青霉烯类耐药肺炎克雷伯菌感染研究进展与挑战, 昆明医科大学学报. 2025, 46(6): 163-170. doi: 10.12259/j.issn.2095-610X.S20250621
    [5] 黄浩, 李雪林, 韩泽华, 常琳, 朱鹏飞, 向盈盈.  噬菌体在口腔常见感染性疾病中的研究及应用, 昆明医科大学学报. 2025, 46(1): 148-153. doi: 10.12259/j.issn.2095-610X.S20250122
    [6] 李洁, 何媛, 吴春燕, 单斌, 郑瑞, 管志福, 任宝军, 师春霞, 周友全, 刘涵禹, 张米, 康燕明, 宋贵波.  2017年—2021年云南地区无菌体液细菌的分布特征及耐药性分析, 昆明医科大学学报. 2023, 44(3): 61-67. doi: 10.12259/j.issn.2095-610X.S20230309
    [7] 拜娴, 崔瑶, 周庆, 李晓丽, 李玥晓, 刘娟, 张石楠.  云南省傈僳族儿童乳牙龋的唾液微生物研究, 昆明医科大学学报. 2022, 43(3): 86-93. doi: 10.12259/j.issn.2095-610X.S20220301
    [8] 杨镕羽, 宋飞, 魏云林, 杨向红, 段开文, 向盈盈.  不同富集培养方法对噬菌体PEf771的滴度影响, 昆明医科大学学报. 2022, 43(2): 7-11. doi: 10.12259/j.issn.2095-610X.S20220218
    [9] 彭思思, 丁慧, 马丽娅, 吕扬, 段彦好, 阳磊, 张石楠.  昆明市大学生口腔健康状况调查, 昆明医科大学学报. 2021, 42(6): 62-66. doi: 10.12259/j.issn.2095-610X.S20210624
    [10] 向盈盈, 宋飞, 杨向红, 周静, 于鸿滨, 魏云林, 季秀玲.  噬菌体疗法在口腔感染性疾病中的应用, 昆明医科大学学报. 2020, 41(06): 167-173.
    [11] 崔瑶, 李玥晓, 李艳红, 刘波, 张石楠, 刘娟.  云南省农村5岁儿童龋病状况及其影响因素, 昆明医科大学学报. 2019, 40(07): 51-55.
    [12] 蒋娟娜, 解保生, 吴云鼎, 周甜.  新型抗菌物质DAPC对变异链球菌粘附作用的影响, 昆明医科大学学报. 2018, 39(03): 55-58.
    [13] 陈静宜, 廖飞, 冯磊, 储从家.  玉溪市2014年至2016年儿童肺炎链球菌感染流行情况及耐药性分析, 昆明医科大学学报. 2017, 38(11): 82-85.
    [14] 彭艺.  云南临沧480名拉祜族居民口腔健康调查, 昆明医科大学学报. 2016, 37(09): -.
    [15] 张艳.  肺炎链球菌分布及耐药分析, 昆明医科大学学报. 2014, 35(07): -.
    [16] 李晓非.  噬菌体生物扩增技术在结核分枝杆菌利福平耐药性检测中的应用, 昆明医科大学学报. 2013, 34(04): -.
    [17] 吴高莉.  噬菌体鉴定食品中沙门菌污染情况调查分析, 昆明医科大学学报. 2013, 34(11): -.
    [18] 何丽芸.  儿童社区获得性肺炎病例肺炎链球菌分离株的耐药分析, 昆明医科大学学报. 2012, 33(09): -.
    [19] 黄成.  学龄前儿童龋病流行病学特征及其防治效果观察, 昆明医科大学学报. 2012, 33(07): -.
    [20] 欧阳欣.  昆明市区12岁儿童龋病调查及影响因素分析, 昆明医科大学学报. 2012, 33(07): -.
  • 加载中
图(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  40
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 网络出版日期:  2026-01-03

目录

    /

    返回文章
    返回