|
[1]
|
Yadav S, Kapley A. Antibiotic resistance: Global health crisis and metagenomics[J]. Biotechnol Rep, 2021, 29: e00604. doi: 10.1016/j.btre.2021.e00604
|
|
[2]
|
周路路, 曹荷清, 欧维正, 等. 贵阳市2018—2021年83株临床分离非结核分枝杆菌的菌种分布及流行情况[J]. 贵州医科大学学报, 2024, 49(10): 1464-1470. doi: 10.19367/j.cnki.2096-8388.2024.10.008
|
|
[3]
|
王佳妮, 周殿友, 武丽娟. 肠道菌群在类风湿关节炎研究中的应用进展[J]. 河北医科大学学报, 2025, 46(02): 235-240.
|
|
[4]
|
Gibb B P, Hadjiargyrou M. Bacteriophage therapy for bone and joint infections[J]. Bone Joint J, 2021, 103-B(2): 234-244.
|
|
[5]
|
Burrows L L. It’s uncomplicated: Prevention of urinary tract infections in an era of increasing antibiotic resistance[J]. PLoS Pathog, 2024, 20(2): e1011930. doi: 10.1371/journal.ppat.1011930
|
|
[6]
|
Suh G A, Ferry T, Abdel M P. Phage therapy as a novel therapeutic for the treatment of bone and joint infections[J]. Clin Infect Dis, 2023, 77(Suppl 5): S407-S415. doi: 10.1093/cid/ciad533
|
|
[7]
|
Simpson E A, MacLeod C S, Stacey H J, et al. The safety and efficacy of phage therapy for infections in cardiac and peripheral vascular surgery: A systematic review[J]. Antibiotics, 2023, 12(12): 1684. doi: 10.3390/antibiotics12121684
|
|
[8]
|
韩经定, 符喜菊, 王正安, 等. 吸烟对慢性牙周炎患者的炎症因子和骨代谢及氧化应激的影响[J]. 贵州医科大学学报, 2024, 49(11): 1687-1692+1698. doi: 10.19367/j.cnki.2096-8388.2024.11.017
|
|
[9]
|
史明月, 马哲. 巨噬细胞在牙周炎影响动脉粥样硬化中的作用研究[J]. 河北医科大学学报, 2024, 45(04): 434-440. doi: 10.3969/j.issn.1007-3205.2024.04.011
|
|
[10]
|
向盈盈, 皮婷, 宋飞, 等. 口腔微生态研究进展[J]. 昆明医科大学学报, 2020, 41(08): 162-166. doi: 10.3969/j.issn.1003-1634.2025.09.013
|
|
[11]
|
Barry M J, Nicholson W K, Silverstein M, et al. Screening and preventive interventions for oral health in adults: US preventive services task force recommendation statement[J]. JAMA, 2023, 330(18): 1773-1779. doi: 10.1001/jama.2023.21409
|
|
[12]
|
Peres M A, MacPherson L M D, Weyant R J, et al. Oral diseases: A global public health challenge[J]. Lancet, 2019, 394(10194): 249-260. doi: 10.1016/S0140-6736(19)31146-8
|
|
[13]
|
Hosseini Hooshiar M, Salari S, Nasiri K, et al. The potential use of bacteriophages as antibacterial agents in dental infection[J]. Virol J, 2024, 21(1): 258. doi: 10.1186/s12985-024-02510-y
|
|
[14]
|
Guo X, Wang X, Shi J, et al. A review and new perspective on oral bacteriophages: Manifestations in the ecology of oral diseases[J]. J Oral Microbiol, 2024, 16(1): 2344272. doi: 10.1080/20002297.2024.2344272
|
|
[15]
|
李之心怡, 龚涛, 彭显, 等. 口腔噬菌体的研究进展[J]. 微生物学杂志, 2024, 44(4): 104-110. doi: 10.3969/j.issn.1005-7021.2024.04.012
|
|
[16]
|
王粟萍, 陈学梅, 魏云林, 等. 纳帕海高原湿地噬藻体g20基因系统发育多样性分析[J]. 微生物学通报, 2021, 48(8): 2574-2582. doi: 10.13344/j.microbiol.china.201022
|
|
[17]
|
曾祥朋, 杨清香. 噬菌体在环境耐药基因转移中的作用综述[J]. 江苏农业科学, 2019, 47(7): 14-18. doi: 10.15889/j.issn.1002-1302.2019.07.004
|
|
[18]
|
向盈盈, 宋飞, 杨向红, 等. 噬菌体疗法在口腔感染性疾病中的应用[J]. 昆明医科大学学报, 2020, 41(06): 167-173. doi: 10.3969/j.issn.1003-4706.2020.06.033
|
|
[19]
|
黄浩, 李雪林, 韩泽华, 等. 噬菌体在口腔常见感染性疾病中的研究及应用[J]. 昆明医科大学学报, 2025, 46(01): 148-153. doi: 10.12259/j.issn.2095-610X.S20250122
|
|
[20]
|
Uyttebroek S, Chen B, Onsea J, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review[J]. Lancet Infect Dis, 2022, 22(8): e208-e220. doi: 10.1016/S1473-3099(21)00612-5
|
|
[21]
|
向盈盈. 难治性根尖周炎粪肠球菌噬菌体PEf771的分离鉴定及其抗感染研究[D]. 昆明: 昆明理工大学, 2019.
|
|
[22]
|
Xiang Y, Wang S, Huang H, et al. A novel endolysin from an Enterococcus faecalis phage and application[J]. Microb Pathog, 2024, 192: 106689. doi: 10.1016/j.micpath.2024.106689
|
|
[23]
|
Xiang Y, Wang S, Huang H, et al. A novel holin from an Enterococcus faecalis phage and application in vitro and in vivo[J]. Microb Pathog, 2024, 186: 106471. doi: 10.1016/j.micpath.2023.106471
|
|
[24]
|
Xiang Y, Yang R, Li X, et al. Phage PEf771 for the treatment of periapical periodontitis induced by Enterococcus faecalis YN771[J]. Crit Rev Immunol, 2024, 44(1): 41-53. doi: 10.1615/CritRevImmunol.2023050313
|
|
[25]
|
Xiang Y, Ma C, Yin S, et al. Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo[J]. Appl Microbiol Biotechnol, 2022, 106(5-6): 2121-2131. doi: 10.1007/s00253-022-11810-8
|
|
[26]
|
Pal N, Sharma P, Kumawat M, et al. Phage therapy: An alternative treatment modality for MDR bacterial infections[J]. Infect Dis, 2024, 56(10): 785-817. doi: 10.1080/23744235.2024.2379492
|
|
[27]
|
Kalia V C, Patel S K S, Gong C, et al. Re-emergence of bacteriophages and their products as antibacterial agents: An overview[J]. Int J Mol Sci, 2025, 26(4): 1755. doi: 10.3390/ijms26041755
|
|
[28]
|
Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota[J]. Antibiotics, 2019, 8(3): 131. doi: 10.3390/antibiotics8030131
|
|
[29]
|
Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it[J]. Molecules, 2020, 25(6): 1340. doi: 10.3390/molecules25061340
|
|
[30]
|
Khalifa L, Shlezinger M, Beyth S, et al. Phage therapy against Enterococcus faecalis in dental root canals[J]. J Oral Microbiol, 2016, 8: 32157. doi: 10.3402/jom.v8.32157
|
|
[31]
|
Brady J M, Gray W A, Caldwell M A. The electron microscopy of bacteriophage-like particles in dental plaque[J]. J Dent Res, 1977, 56(8): 991-993. doi: 10.1177/00220345770560082901
|
|
[32]
|
Van Der Ploeg J R. Genome sequence of Streptococcus mutans bacteriophage M102[J]. FEMS Microbiol Lett, 2007, 275(1): 130-138. doi: 10.1111/j.1574-6968.2007.00873.x
|
|
[33]
|
Delisle A L, Rostkowski C A. Lytic bacteriophages ofStreptococcus mutans[J]. Curr Microbiol, 1993, 27(3): 163-167. doi: 10.1007/BF01576015
|
|
[34]
|
李雨含, 李嘉鑫, 张诗铭等, 变形链球菌噬菌体在龋病防治中的研究进展[J]. 口腔疾病防治, 2021, 29(03): 184-188.
|
|
[35]
|
Delisle A L, Guo M, Chalmers N I, et al. Biology and genome sequence of Streptococcus mutans phage M102AD[J]. Appl Environ Microbiol, 2012, 78(7): 2264-2271. doi: 10.1128/AEM.07726-11
|
|
[36]
|
Dalmasso M, de Haas E, Neve H, et al. Isolation of a novel phage with activity against Streptococcus mutans biofilms[J]. PLoS One, 2015, 10(9): e0138651. doi: 10.1371/journal.pone.0138651
|
|
[37]
|
Ben-Zaken H, Kraitman R, Coppenhagen-Glazer S, et al. Isolation and characterization of Streptococcus mutans phage as a possible treatment agent for caries[J]. Viruses, 2021, 13(5): 825. doi: 10.3390/v13050825
|
|
[38]
|
Sugai K, Kawada-Matsuo M, Nguyen-Tra Le M, et al. Isolation of Streptococcus mutans temperate bacteriophage with broad killing activity to S. mutans clinical isolates[J]. iScience, 2023, 26(12): 108465. doi: 10.1016/j.isci.2023.108465
|
|
[39]
|
戴煦原. 变形链球菌生物膜在致龋过程中的作用及其机理研究[D]. 北京: 中国人民解放军医学院, 2019.
|
|
[40]
|
Wolfoviz-Zilberman A, Kraitman R, Hazan R, et al. Phage targeting Streptococcus mutans in vitro and in vivo as a caries-preventive modality[J]. Antibiotics, 2021, 10(8): 1015. doi: 10.3390/antibiotics10081015
|
|
[41]
|
Zhang Y, Peng X, Zhang H, et al. Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations[J]. Int J Pharm, 2018, 542(1-2): 1-7. doi: 10.1016/j.ijpharm.2018.02.023
|
|
[42]
|
Malik D J, Sokolov I J, Vinner G K, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy[J]. Adv Colloid Interface Sci, 2017, 249: 100-133.
|
|
[43]
|
Loeffler J M, Nelson D, Fischetti V A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase[J]. Science, 2001, 294(5549): 2170-2172. doi: 10.1126/science.1066869
|
|
[44]
|
Szafrański S P, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms[J]. J Biotechnol, 2017, 250: 29-44. doi: 10.1016/j.jbiotec.2017.01.002
|
|
[45]
|
Yang H, Linden S B, Wang J, et al. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method[J]. Sci Rep, 2015, 5: 17257. doi: 10.1038/srep17257
|
|
[46]
|
徐晶晶, 陶庭亮, 李宇红. 一种噬菌体裂解酶的抗龋作用研究[J]. 口腔医学研究, 2018, 34(10): 1052-1056. doi: 10.13701/j.cnki.kqyxyj.2018.10.006
|
|
[47]
|
徐晶晶. 嵌合裂解酶的重组表达及其抗菌作用研究[D]. 武汉: 武汉大学, 2018.
|
|
[48]
|
赵晓苇, 陈方圆, 危宏平, 等. 噬菌体裂解酶LysP53漱口水的制备与评价[J]. 口腔医学研究, 2023, 39(6): 553-557. doi: 10.13701/j.cnki.kqyxyj.2023.06.016
|
|
[49]
|
Bhargava K, Nath G, Bhargava A, et al. Phage therapeutics: From promises to practices and prospectives[J]. Appl Microbiol Biotechnol, 2021, 105(24): 9047-9067. doi: 10.1007/s00253-021-11695-z
|
|
[50]
|
Saha D, Mukherjee R. Ameliorating the antimicrobial resistance crisis: Phage therapy[J]. IUBMB Life, 2019, 71(7): 781-790. doi: 10.1002/iub.2010
|
|
[51]
|
Tagliaferri T L, Jansen M, Horz H P. Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy[J]. Front Cell Infect Microbiol, 2019, 9: 22. doi: 10.3389/fcimb.2019.00022
|
|
[52]
|
Shlezinger M, Coppenhagen-Glazer S, Gelman D, et al. Eradication of vancomycin-resistant enterococci by combining phage and vancomycin[J]. Viruses, 2019, 11(10): 954. doi: 10.3390/v11100954
|
|
[53]
|
Joo H, Wu S M, Soni I, et al. Phage and antibiotic combinations reduce Staphylococcus aureus in static and dynamic biofilms grown on an implant material[J]. Viruses, 2023, 15(2): 460. doi: 10.3390/v15020460
|
|
[54]
|
曾堃. 耐药粪肠球菌致根尖周炎的噬菌体-抗生素联合治疗研究[D]. 昆明: 昆明理工大学, 2024.
|
|
[55]
|
Górski A, Międzybrodzki R, Borysowski J, et al. Phage as a modulator of immune responses: Practical implications for phage therapy[J]. Adv Virus Res, 2012, 83: 41-71.
|
|
[56]
|
Walsh L, Johnson C N, Hill C, et al. Efficacy of phage- and bacteriocin-based therapies in combatting nosocomial MRSA infections[J]. Front Mol Biosci, 2021, 8: 654038. doi: 10.3389/fmolb.2021.654038
|
|
[57]
|
Berkson J D, Wate C E, Allen G B, et al. Phage-specific immunity impairs efficacy of bacteriophage targeting Vancomycin Resistant Enterococcus in a murine model[J]. Nat Commun, 2024, 15(1): 2993. doi: 10.1038/s41467-024-47192-w
|
|
[58]
|
Chen J, Quiles-Puchalt N, Chiang Y N, et al. Genome hypermobility by lateral transduction[J]. Science, 2018, 362(6411): 207-212. doi: 10.1126/science.aat5867
|
|
[59]
|
Yuan Y, Wang L, Li X, et al. Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii[J]. Virus Res, 2019, 272: 197734. doi: 10.1016/j.virusres.2019.197734
|
|
[60]
|
Yu L, Wang S, Guo Z, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli[J]. Appl Microbiol Biotechnol, 2018, 102(2): 971-983. doi: 10.1007/s00253-017-8591-z
|