留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CCL3在艾滋病发病机制中的研究进展

刘元菊 李晓岚 刘洁 许银德 朱芸

刘元菊, 李晓岚, 刘洁, 许银德, 朱芸. CCL3在艾滋病发病机制中的研究进展[J]. 昆明医科大学学报.
引用本文: 刘元菊, 李晓岚, 刘洁, 许银德, 朱芸. CCL3在艾滋病发病机制中的研究进展[J]. 昆明医科大学学报.
Yuanju Liu, Xiaolan LI, Jie LIU, Yinde XU, Yun ZHU. Research Progress on CCL3 in the Pathogenesis of AIDS[J]. Journal of Kunming Medical University.
Citation: Yuanju Liu, Xiaolan LI, Jie LIU, Yinde XU, Yun ZHU. Research Progress on CCL3 in the Pathogenesis of AIDS[J]. Journal of Kunming Medical University.

CCL3在艾滋病发病机制中的研究进展

基金项目: 国家自然科学基金(81760136),硕士研究生创新基金(2024S274)
详细信息
    作者简介:

    刘元菊(1995~),女,云南昭通人,在读硕士研究生,主要从事皮肤病与性病相关疾病机制研究工作

    通讯作者:

    李晓岚,E-mail:prolixl@163.com

  • 中图分类号: R759

Research Progress on CCL3 in the Pathogenesis of AIDS

More Information
    Corresponding author: 李晓岚,二级教授,一级主任医师,博士生导师。现任昆明医科大学第二附属医院皮肤性病科主任。云南省中青年学术和技术带头人,中华医学会皮肤性病学分会第十四、十五届委员会遗传学组委员,中国医师协会皮肤科医师分会第五届委员会罕见遗传病专业委员会委员,中国康复医学会皮肤病康复专业委员会第二届委员会银屑病康复学组委员,中国老年医学学会第一届皮肤医学分会常务委员,云南省医学会皮肤病与性病学分会副主任委员。共发表学术论文110余篇,其中以第一作者/通信作者发表SCI论文20篇。主持国家自然科学基金3项、省科技厅/昆明医科大学联合专项重点项目1项,中国科学院国家重点实验室开放课题1项、云南省面上项目2项。多年来一直致力于自身免疫性疾病、多基因遗传病、损容性皮肤病、皮肤美容光电技术的研究。
  • 摘要: 获得性免疫缺陷综合征(acquired immune deficiency syndrome,AIDS)是一种由人类免疫缺陷病毒(HIV)引发的全身性疾病。趋化因子配体3[Chemokine (C-C motif) ligand 3,CCL3]作为趋化因子家族的重要成员,在艾滋病发病机制中扮演着不可或缺的角色。CCL3通过阻止HIV进入靶细胞,激活免疫细胞增强抗病毒能力,并调节炎症反应和影响疾病进展,发挥重要的抗病毒和免疫调节作用。大量研究表明CCL3基因拷贝数、特定T细胞反应、CCL3多态性以及其参与的信号通路均影响HIV的发展及病毒载量。综述了CCL3通过阻断HIV-1进入免疫细胞、诱导抗病毒蛋白表达抑制病毒复制,以及其多态性和等位基因对HIV感染及进展的影响等多方面对艾滋病的作用,以期为艾滋病防治策略提供新的理论支撑。
  • 图  1  趋化因子CCL3等结合CCR5,阻断HIV-1进入CD4+T细胞和其他免疫细胞的过程

    Figure  1.  Chemokine CCL3 and others bind to CCR5,blocking the entry of HIV-1 into CD4+ T cells and other immune cells

  • [1] Angin M,Sharma S,King M,et al. HIV-1 infection impairs regulatory T-cell suppressive capacity on a per-cell basis[J]. J Infect Dis,2014,210(6):899-903. doi: 10.1093/infdis/jiu188
    [2] Sheykhhasan M,Foroutan A,Manoochehri H,et al. Could gene therapy cure HIV?[J]. Life Sci,2021,277:119451. doi: 10.1016/j.lfs.2021.119451
    [3] Morty R E,Morris A. World AIDS Day 2021: highlighting the pulmonary complications of HIV/AIDS[J]. Am J Physiol Lung Cell Mol Physiol,2021,321(6):L1069-L1071. doi: 10.1152/ajplung.00471.2021
    [4] McEntire C R S,Fong K T,Jia D T,et al. Central nervous system disease with JC virus infection in adults with congenital HIV[J]. Aids,2021,35(2):235-244. doi: 10.1097/QAD.0000000000002734
    [5] 热伊拜·亚迪佧尔,陈晶,杨建东,等. 新疆维吾尔自治区2007-2015年HIV/AIDS病例空间自相关分析[J]. 中国艾滋病性病,2017,23(4):292-295.
    [6] Pang X,Wei H,Huang J,et al. Patterns and risk of HIV-1 transmission network among men who have sex with men in Guangxi,China[J]. Sci Rep,2021,11(1):513. doi: 10.1038/s41598-020-79951-2
    [7] 韩孟杰. 我国艾滋病流行形势分析和防治展望[J]. 中国艾滋病性病,2023,29(3):247-250.
    [8] 刘丽丽,王庆,潘振强. 艾滋病危害宣传的自省式健康教育在艾滋病预防控制中的应用分析[J]. 中国医药指南,2020,18(5):143-144.
    [9] Aldinucci D,Borghese C,Casagrande N. The CCL5/CCR5 axis in cancer progression[J]. Cancers (Basel),2020,12(7):1765. doi: 10.3390/cancers12071765
    [10] Wolpe S D,Davatelis G,Sherry B,et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties[J]. J Exp Med,1988,167(2):570-581. doi: 10.1084/jem.167.2.570
    [11] Zlotnik A,Yoshie O. Chemokines: a new classification system and their role in immunity[J]. Immunity,2000,12(2):121-127. doi: 10.1016/S1074-7613(00)80165-X
    [12] Allen F,Bobanga I D,Rauhe P,et al. CCL3 augments tumor rejection and enhances CD8(+) T cell infiltration through NK and CD103(+) dendritic cell recruitment via IFNγ[J]. Oncoimmunology,2018,7(3):e1393598. doi: 10.1080/2162402X.2017.1393598
    [13] Jiao X,Nawab O,Patel T,et al. Recent advances targeting CCR5 for cancer and its role in immuno-oncology[J]. Cancer Res,2019,79(19):4801-4807. doi: 10.1158/0008-5472.CAN-19-1167
    [14] Xu X Q,Guo L,Wang X,et al. Human cervical epithelial ccells release antiviral factors and inhibit HIV replication in macrophages[J]. J Innate Immun,2019,11(1):29-40. doi: 10.1159/000490586
    [15] Ao Z,Wang L,Azizi H,et al. Development and evaluation of an ebola virus glycoprotein mucin-like domain replacement system as a new dendritic cell-targeting vaccine approach against HIV-1[J]. J Virol,2021,95(15):e0236820. doi: 10.1128/JVI.02368-20
    [16] Yin X,Wang Z,Wu T,et al. The combination of CXCL9,CXCL10 and CXCL11 levels during primary HIV infection predicts HIV disease progression[J]. J Transl Med,2019,17(1):417. doi: 10.1186/s12967-019-02172-3
    [17] Christo P P,Vilela Mde C,Bretas T L,et al. Cerebrospinal fluid levels of chemokines in HIV infected patients with and without opportunistic infection of the central nervous system[J]. J Neurol Sci,2009,287(1-2):79-83. doi: 10.1016/j.jns.2009.09.002
    [18] Jennes W,Sawadogo S,Koblavi-Dème S,et al. Positive association between beta-chemokine-producing T cells and HIV type 1 viral load in HIV-infected subjects in Abidjan,Côte d'Ivoire[J]. AIDS Res Hum Retroviruses,2002,18(3):171-177. doi: 10.1089/08892220252781220
    [19] Wright S M,Mleczko A,Coats K S. Bovine immunodeficiency virus expression in vitro is reduced in the presence of beta-chemokines,MIP-1alpha,MIP-1beta and RANTES[J]. Vet Res Commun,2002,26(3):239-250. doi: 10.1023/A:1015209806058
    [20] Meddows-Taylor S,Donninger S L,Paximadis M,et al. Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission[J]. J Gen Virol,2006,87(Pt 7): 2055-2065.
    [21] Petkov S,Chiodi F. Distinct transcriptomic profiles of naïve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection[J]. Genomics,2021,113(6):3487-3500. doi: 10.1016/j.ygeno.2021.08.014
    [22] Vega J A,Villegas-Ospina S,Aguilar-Jiménez W,et al. Haplotypes in CCR5-CCR2,CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort[J]. Biomedica,2017,37(2):267-273.
    [23] Paximadis M,Schramm D B,Gray G E,et al. Influence of intragenic CCL3 haplotypes and CCL3L copy number in HIV-1 infection in a sub-Saharan African population[J]. Genes Immun,2013,14(1):42-51. doi: 10.1038/gene.2012.51
    [24] Shalekoff S,Meddows-Taylor S,Schramm D B,et al. Host CCL3L1 gene copy number in relation to HIV-1-specific CD4+ and CD8+ T-cell responses and viral load in South African women[J]. J Acquir Immune Defic Syndr,2008,48(3):245-254. doi: 10.1097/QAI.0b013e31816fdc77
    [25] Lim S Y,Chan T,Gelman R S,et al. Contributions of Mamu-A*01 status and TRIM5 allele expression,but not CCL3L copy number variation,to the control of SIVmac251 replication in Indian-origin rhesus monkeys[J]. PLoS Genet,2010,6(6):e1000997. doi: 10.1371/journal.pgen.1000997
    [26] Gonzalez E,Kulkarni H,Bolivar H,et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility[J]. Science,2005,307(5714):1434-1440. doi: 10.1126/science.1101160
    [27] Hu L,Song W,Brill I,et al. Genetic variations and heterosexual HIV-1 infection: Analysis of clustered genes encoding CC-motif chemokine ligands[J]. Genes Immun,2012,13(2):202-205. doi: 10.1038/gene.2011.70
    [28] Gonzalez E,Dhanda R,Bamshad M,et al. Global survey of genetic variation in CCR5,RANTES,and MIP-1alpha: impact on the epidemiology of the HIV-1 pandemic[J]. Proc Natl Acad Sci U S A,2001,98(9):5199-5204. doi: 10.1073/pnas.091056898
    [29] Modi W S,Lautenberger J,An P,et al. Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression[J]. Am J Hum Genet,2006,79(1):120-128. doi: 10.1086/505331
    [30] 靳廷丽,刘丽萍,易志强,等. 江西人群CCL3L1基因拷贝数与HIV感染相关性研究[J]. 实验与检验医学,2017,35(02):163-166. doi: 10.3969/j.issn.1674-1129.2017.02.008
    [31] Casazza J P,Brenchley J M,Hill B J,et al. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection[J]. PLoS Pathog,2009,5(10):e1000646. doi: 10.1371/journal.ppat.1000646
    [32] Walker W E,Kurscheid S,Joshi S,et al. Increased Levels of Macrophage Inflammatory Proteins Result in Resistance to R5-Tropic HIV-1 in a Subset of Elite Controllers[J]. J Virol,2015,89(10):5502-5514. doi: 10.1128/JVI.00118-15
    [33] Hudspeth K,Fogli M,Correia D V,et al. Engagement of NKp30 on Vδ1 T cells induces the production of CCL3,CCL4,and CCL5 and suppresses HIV-1 replication[J]. Blood,2012,119(17):4013-4016. doi: 10.1182/blood-2011-11-390153
    [34] Zhou L,Wang X,Xiao Q,et al. Flagellin restricts HIV-1 infection of macrophages through modulation of viral entry receptors and CC chemokines[J]. Viruses,2024,16(7):1063. doi: 10.3390/v16071063
    [35] Phetsouphanh C,Phalora P,Hackstein C P,et al. Human MAIT cells respond to and suppress HIV-1[J]. Elife,2021,10:e50324. doi: 10.7554/eLife.50324
    [36] Ellegard R,Crisci E,Andersson J,et al. Impaired NK cell activation and chemotaxis toward dendritic cells exposed to complement-opsonized HIV-1[J]. J Immunol,2015,195(4):1698-1704. doi: 10.4049/jimmunol.1500618
    [37] Flórez-Álvarez L,Hernandez J C,Zapata W. NK cells in HIV-1 infection: from basic science to vaccine strategies[J]. Front Immunol,2018,9:2290. doi: 10.3389/fimmu.2018.02290
    [38] Furtado Milão J,Love L,Gourgi G,et al. Natural killer cells induce HIV-1 latency reversal after treatment with pan-caspase inhibitors[J]. Front Immunol,2022,13:1067767. doi: 10.3389/fimmu.2022.1067767
    [39] Rossi F W,Prevete N,Rivellese F,et al. HIV-1 Nef promotes migration and chemokine synthesis of human basophils and mast cells through the interaction with CXCR4[J]. Clin Mol Allergy,2016,14:15. doi: 10.1186/s12948-016-0052-1
    [40] Dai M,Wang X,Li J L,et al. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages[J]. Faseb j,2015,29(12):4978-4988. doi: 10.1096/fj.15-273128
    [41] Temerozo J R,Joaquim R,Regis E G,et al. Macrophage resistance to HIV-1 infection is enhanced by the neuropeptides VIP and PACAP[J]. PLoS One,2013,8(6):e67701. doi: 10.1371/journal.pone.0067701
    [42] Gornalusse G G,Valdez R,Fenkart G,et al. Mechanisms of endogenous HIV-1 reactivation by endocervical epithelial cells[J]. J Virol,2020,94(9):e01904-e01919.
    [43] Shang L,Duan L,Perkey K E,et al. Epithelium-innate immune cell axis in mucosal responses to SIV[J]. Mucosal Immunol,2017,10(2):508-519. doi: 10.1038/mi.2016.62
    [44] Coelho A V C,Gratton R,Melo J P B,et al. HIV-1 infection transcriptomics: Meta-Analysis of CD4+ T cells gene expression profiles[J]. Viruses,2021,13(2):244. doi: 10.3390/v13020244
    [45] Sun B,da Costa K A S,Alrubayyi A,et al. HIV/HBV coinfection remodels the immune landscape and natural killer cell ADCC functional responses[J]. Hepatology,2024,80(3):649-663. doi: 10.1097/HEP.0000000000000877
    [46] Fisher B S,Green R R,Brown R R,et al. Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART[J]. PLoS Pathog,2018,14(2):e1006871. doi: 10.1371/journal.ppat.1006871
    [47] Roscic-Mrkic B,Fischer M,Leemann C,et al. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement[J]. Blood,2003,102(4):1169-1177. doi: 10.1182/blood-2003-02-0488
    [48] Del Corno M,Liu Q H,Schols D,et al. HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent,pertussis toxin-insensitive chemokine receptor signaling[J]. Blood,2001,98(10):2909-2916. doi: 10.1182/blood.V98.10.2909
    [49] Zhang R Z,Kane M. Insights into the role of HIV-1 Vpu in modulation of NF-ĸB signaling pathways[J]. mBio,2023,14(4):e0092023.
    [50] Wang H,Liu Y,Huan C,et al. NF-κB-interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling[J]. J Virol,2020,94(17):e01057-20.
    [51] Chan J K,Greene W C. NF-κB/Rel: Agonist and antagonist roles in HIV-1 latency[J]. Curr Opin HIV AIDS,2011,6(1):12-18. doi: 10.1097/COH.0b013e32834124fd
    [52] O'Connell P,Pepelyayeva Y,Blake M K,et al. SLAMF7 is a critical negative regulator of IFN-α-mediated CXCL10 production in chronic HIV infection[J]. J Immunol,2019,202(1):228-238. doi: 10.4049/jimmunol.1800847
    [53] Sturt A S,Webb E L,Patterson C,et al. Cervicovaginal immune activation in zambian women with female genital schistosomiasis[J]. Front Immunol,2021,12:620657. doi: 10.3389/fimmu.2021.620657
    [54] Chen J,He Y,Zhong H,et al. Transcriptome analysis of CD4(+) T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity[J]. Virol Sin,2023,38(3):398-408. doi: 10.1016/j.virs.2023.03.001
    [55] Blondin-Ladrie L,Fourcade L,Modica A,et al. Monocyte gene and molecular expression profiles suggest distinct effector and regulatory functions in beninese HIV highly exposed seronegative female commercial sex workers[J]. Viruses,2022,14(2):361. doi: 10.3390/v14020361
    [56] Vanpouille C,Wells A,Wilkin T,et al. Sex differences in cytokine profiles during suppressive antiretroviral therapy[J]. Aids,2022,36(9):1215-1222.
    [57] Ao Z,Wang L,Mendoza E J,et al. Incorporation of ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses[J]. PLoS One,2019,14(5):e0216949. doi: 10.1371/journal.pone.0216949
    [58] Hunegnaw R,Helmold Hait S,Enyindah-Asonye G,et al. A mucosal adenovirus prime/systemic envelope boost vaccine regimen elicits responses in cervicovaginal and alveolar macrophages of rhesus macaques associated with delayed SIV acquisition and B cell help[J]. Front Immunol,2020,11:571804. doi: 10.3389/fimmu.2020.571804
    [59] Ka'e A C,Nanfack A J,Ambada G,et al. Inflammatory profile of vertically HIV-1 infected adolescents receiving ART in cameroon: A contribution toward optimal pediatric HIV control strategies[J]. Front Immunol,2023,14:1239877. doi: 10.3389/fimmu.2023.1239877
    [60] Petkov S,Herrera C,Else L,et al. Mobilization of systemic CCL4 following HIV pre-exposure prophylaxis in young men in Africa[J]. Front Immunol,2022,13:965214. doi: 10.3389/fimmu.2022.965214
  • [1] 向雪琳, 赵红瑞, 王中杰, 夏宇, 马敏, 王化丹, 何利平.  抗病毒治疗的HIV感染者社会支持状况及影响因素分析, 昆明医科大学学报. 2024, 45(9): 156-162. doi: 10.12259/j.issn.2095-610X.S20240924
    [2] 田波, 金永梅, 李海雯, 李重熙, 张伟, 关玮, 陈海云, 薛琪, 杨惠榕, 刘俊.  艾滋病抗病毒治疗患者代谢综合征发生现况及影响因素, 昆明医科大学学报. 2024, 45(11): 149-154. doi: 10.12259/j.issn.2095-610X.S20241121
    [3] 田波, 刘俊, 李重熙, 张伟, 房梅芹, 陈海云, 柏静萍, 周鑫, 程雷, 金永梅.  快速启动艾滋病抗病毒治疗成效观察及影响因素分析, 昆明医科大学学报. 2024, 45(9): 163-167. doi: 10.12259/j.issn.2095-610X.S20240925
    [4] 田波, 李重熙, 金永梅, 关玮, 陈海云, 刘俊.  艾滋病患者抗病毒治疗方案的使用及更换情况, 昆明医科大学学报. 2023, 44(5): 162-167. doi: 10.12259/j.issn.2095-610X.S20230508
    [5] 曾点点, 田波, 金咏梅, 李重熙, 滕芬, 刘俊.  昆明地区不同抗病毒治疗方案艾滋病患者生存质量横断面调查, 昆明医科大学学报. 2022, 43(12): 147-152. doi: 10.12259/j.issn.2095-610X.S20221227
    [6] 田波, 刘俊, 李海雯, 宋炜, 陈海云, 孙建军.  艾滋病患者细菌性血流感染病原菌分布及耐药情况, 昆明医科大学学报. 2022, 43(6): 140-146. doi: 10.12259/j.issn.2095-610X.S20220616
    [7] 田波, 沈银忠, 白劲松, 刘俊, 陈海云, 孙建军.  艾滋病患者中播散性马尔尼菲篮状菌病与播散性非结核分枝杆菌病的临床特征, 昆明医科大学学报. 2022, 43(7): 140-144. doi: 10.12259/j.issn.2095-610X.S20220718
    [8] 张乐, 何愿强, 夏加伟, 刘澍, 白彬, 刘幸.  支气管镜肺泡灌洗术早期介入治疗对艾滋病合并重症肺炎的作用, 昆明医科大学学报. 2022, 43(11): 151-155. doi: 10.12259/j.issn.2095-610X.S20221120
    [9] 黄山, 吕松琴, 段洪芬, 施金丽, 李光敏, 黄岗, 李佳能, 李晓非.  机会性感染病原体对新发艾滋病患者抗病毒治疗过程中T淋巴细胞亚群分布影响的队列研究, 昆明医科大学学报. 2021, 42(11): 159-165. doi: 10.12259/j.issn.2095-610X.S20211128
    [10] 张乐, 彭静, 夏加伟, 岳云璇.  血液净化技术救治艾滋病并急性肾功能衰竭的疗效, 昆明医科大学学报. 2018, 39(12): 115-119.
    [11] 王维波, 金永梅, 杨俊婕, 钱丽芳, 房梅芹, 白劲松.  艾滋病科应用移动护士站满意度分析, 昆明医科大学学报. 2018, 39(07): 146-148.
    [12] 张璐平, 韩跃红, 陈桂荣, 张文杰, 赵霞, 余晓梅.  艾滋病暴露预防用药的研究, 昆明医科大学学报. 2018, 39(02): 124-127.
    [13] 冯峻, 王尚文, 张诤, 李玉明.  边疆多民族地区不同高校大学生艾滋病健康教育需求现状调查, 昆明医科大学学报. 2017, 38(08): 122-125.
    [14] 刘俊.  中药、克力芝治疗HAART后免疫重建不良患者疗效及成本效益, 昆明医科大学学报. 2015, 36(07): -1.
    [15] 潘颂峰.  云南省4个县(市)低档暗娼艾滋病和梅毒感染状况分析, 昆明医科大学学报. 2015, 36(10): -.
    [16] 赵光昱.  凉山州中医医院医务人员艾滋病知识认知与防护行为调查分析, 昆明医科大学学报. 2013, 34(09): -.
    [17] 伏忠阳.  职业学校学生艾滋病相关知识与性行为的研究, 昆明医科大学学报. 2013, 34(01): -.
    [18] 苏云鹏.  大理地区3 461名大一新生艾滋病知识态度调查分析, 昆明医科大学学报. 2012, 33(01): -.
    [19] 艾滋病16例耳鼻喉科临床表现分析, 昆明医科大学学报. 2011, 32(03): -.
    [20] 丁鹏.  新生大鼠海马神经干细胞表达趋化因子受体CCR2的体外研究, 昆明医科大学学报. 2008, 29(01): -.
  • 加载中
图(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 网络出版日期:  2025-01-13

目录

    /

    返回文章
    返回