[1]
|
Angin M,Sharma S,King M,et al. HIV-1 infection impairs regulatory T-cell suppressive capacity on a per-cell basis[J]. J Infect Dis,2014,210(6):899-903. doi: 10.1093/infdis/jiu188
|
[2]
|
Sheykhhasan M,Foroutan A,Manoochehri H,et al. Could gene therapy cure HIV?[J]. Life Sci,2021,277:119451. doi: 10.1016/j.lfs.2021.119451
|
[3]
|
Morty R E,Morris A. World AIDS Day 2021: highlighting the pulmonary complications of HIV/AIDS[J]. Am J Physiol Lung Cell Mol Physiol,2021,321(6):L1069-L1071. doi: 10.1152/ajplung.00471.2021
|
[4]
|
McEntire C R S,Fong K T,Jia D T,et al. Central nervous system disease with JC virus infection in adults with congenital HIV[J]. Aids,2021,35(2):235-244. doi: 10.1097/QAD.0000000000002734
|
[5]
|
热伊拜·亚迪佧尔,陈晶,杨建东,等. 新疆维吾尔自治区2007-2015年HIV/AIDS病例空间自相关分析[J]. 中国艾滋病性病,2017,23(4):292-295.
|
[6]
|
Pang X,Wei H,Huang J,et al. Patterns and risk of HIV-1 transmission network among men who have sex with men in Guangxi,China[J]. Sci Rep,2021,11(1):513. doi: 10.1038/s41598-020-79951-2
|
[7]
|
韩孟杰. 我国艾滋病流行形势分析和防治展望[J]. 中国艾滋病性病,2023,29(3):247-250.
|
[8]
|
刘丽丽,王庆,潘振强. 艾滋病危害宣传的自省式健康教育在艾滋病预防控制中的应用分析[J]. 中国医药指南,2020,18(5):143-144.
|
[9]
|
Aldinucci D,Borghese C,Casagrande N. The CCL5/CCR5 axis in cancer progression[J]. Cancers (Basel),2020,12(7):1765. doi: 10.3390/cancers12071765
|
[10]
|
Wolpe S D,Davatelis G,Sherry B,et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties[J]. J Exp Med,1988,167(2):570-581. doi: 10.1084/jem.167.2.570
|
[11]
|
Zlotnik A,Yoshie O. Chemokines: a new classification system and their role in immunity[J]. Immunity,2000,12(2):121-127. doi: 10.1016/S1074-7613(00)80165-X
|
[12]
|
Allen F,Bobanga I D,Rauhe P,et al. CCL3 augments tumor rejection and enhances CD8(+) T cell infiltration through NK and CD103(+) dendritic cell recruitment via IFNγ[J]. Oncoimmunology,2018,7(3):e1393598. doi: 10.1080/2162402X.2017.1393598
|
[13]
|
Jiao X,Nawab O,Patel T,et al. Recent advances targeting CCR5 for cancer and its role in immuno-oncology[J]. Cancer Res,2019,79(19):4801-4807. doi: 10.1158/0008-5472.CAN-19-1167
|
[14]
|
Xu X Q,Guo L,Wang X,et al. Human cervical epithelial ccells release antiviral factors and inhibit HIV replication in macrophages[J]. J Innate Immun,2019,11(1):29-40. doi: 10.1159/000490586
|
[15]
|
Ao Z,Wang L,Azizi H,et al. Development and evaluation of an ebola virus glycoprotein mucin-like domain replacement system as a new dendritic cell-targeting vaccine approach against HIV-1[J]. J Virol,2021,95(15):e0236820. doi: 10.1128/JVI.02368-20
|
[16]
|
Yin X,Wang Z,Wu T,et al. The combination of CXCL9,CXCL10 and CXCL11 levels during primary HIV infection predicts HIV disease progression[J]. J Transl Med,2019,17(1):417. doi: 10.1186/s12967-019-02172-3
|
[17]
|
Christo P P,Vilela Mde C,Bretas T L,et al. Cerebrospinal fluid levels of chemokines in HIV infected patients with and without opportunistic infection of the central nervous system[J]. J Neurol Sci,2009,287(1-2):79-83. doi: 10.1016/j.jns.2009.09.002
|
[18]
|
Jennes W,Sawadogo S,Koblavi-Dème S,et al. Positive association between beta-chemokine-producing T cells and HIV type 1 viral load in HIV-infected subjects in Abidjan,Côte d'Ivoire[J]. AIDS Res Hum Retroviruses,2002,18(3):171-177. doi: 10.1089/08892220252781220
|
[19]
|
Wright S M,Mleczko A,Coats K S. Bovine immunodeficiency virus expression in vitro is reduced in the presence of beta-chemokines,MIP-1alpha,MIP-1beta and RANTES[J]. Vet Res Commun,2002,26(3):239-250. doi: 10.1023/A:1015209806058
|
[20]
|
Meddows-Taylor S,Donninger S L,Paximadis M,et al. Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission[J]. J Gen Virol,2006,87(Pt 7): 2055-2065.
|
[21]
|
Petkov S,Chiodi F. Distinct transcriptomic profiles of naïve CD4+ T cells distinguish HIV-1 infected patients initiating antiretroviral therapy at acute or chronic phase of infection[J]. Genomics,2021,113(6):3487-3500. doi: 10.1016/j.ygeno.2021.08.014
|
[22]
|
Vega J A,Villegas-Ospina S,Aguilar-Jiménez W,et al. Haplotypes in CCR5-CCR2,CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort[J]. Biomedica,2017,37(2):267-273.
|
[23]
|
Paximadis M,Schramm D B,Gray G E,et al. Influence of intragenic CCL3 haplotypes and CCL3L copy number in HIV-1 infection in a sub-Saharan African population[J]. Genes Immun,2013,14(1):42-51. doi: 10.1038/gene.2012.51
|
[24]
|
Shalekoff S,Meddows-Taylor S,Schramm D B,et al. Host CCL3L1 gene copy number in relation to HIV-1-specific CD4+ and CD8+ T-cell responses and viral load in South African women[J]. J Acquir Immune Defic Syndr,2008,48(3):245-254. doi: 10.1097/QAI.0b013e31816fdc77
|
[25]
|
Lim S Y,Chan T,Gelman R S,et al. Contributions of Mamu-A*01 status and TRIM5 allele expression,but not CCL3L copy number variation,to the control of SIVmac251 replication in Indian-origin rhesus monkeys[J]. PLoS Genet,2010,6(6):e1000997. doi: 10.1371/journal.pgen.1000997
|
[26]
|
Gonzalez E,Kulkarni H,Bolivar H,et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility[J]. Science,2005,307(5714):1434-1440. doi: 10.1126/science.1101160
|
[27]
|
Hu L,Song W,Brill I,et al. Genetic variations and heterosexual HIV-1 infection: Analysis of clustered genes encoding CC-motif chemokine ligands[J]. Genes Immun,2012,13(2):202-205. doi: 10.1038/gene.2011.70
|
[28]
|
Gonzalez E,Dhanda R,Bamshad M,et al. Global survey of genetic variation in CCR5,RANTES,and MIP-1alpha: impact on the epidemiology of the HIV-1 pandemic[J]. Proc Natl Acad Sci U S A,2001,98(9):5199-5204. doi: 10.1073/pnas.091056898
|
[29]
|
Modi W S,Lautenberger J,An P,et al. Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression[J]. Am J Hum Genet,2006,79(1):120-128. doi: 10.1086/505331
|
[30]
|
靳廷丽,刘丽萍,易志强,等. 江西人群CCL3L1基因拷贝数与HIV感染相关性研究[J]. 实验与检验医学,2017,35(02):163-166. doi: 10.3969/j.issn.1674-1129.2017.02.008
|
[31]
|
Casazza J P,Brenchley J M,Hill B J,et al. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection[J]. PLoS Pathog,2009,5(10):e1000646. doi: 10.1371/journal.ppat.1000646
|
[32]
|
Walker W E,Kurscheid S,Joshi S,et al. Increased Levels of Macrophage Inflammatory Proteins Result in Resistance to R5-Tropic HIV-1 in a Subset of Elite Controllers[J]. J Virol,2015,89(10):5502-5514. doi: 10.1128/JVI.00118-15
|
[33]
|
Hudspeth K,Fogli M,Correia D V,et al. Engagement of NKp30 on Vδ1 T cells induces the production of CCL3,CCL4,and CCL5 and suppresses HIV-1 replication[J]. Blood,2012,119(17):4013-4016. doi: 10.1182/blood-2011-11-390153
|
[34]
|
Zhou L,Wang X,Xiao Q,et al. Flagellin restricts HIV-1 infection of macrophages through modulation of viral entry receptors and CC chemokines[J]. Viruses,2024,16(7):1063. doi: 10.3390/v16071063
|
[35]
|
Phetsouphanh C,Phalora P,Hackstein C P,et al. Human MAIT cells respond to and suppress HIV-1[J]. Elife,2021,10:e50324. doi: 10.7554/eLife.50324
|
[36]
|
Ellegard R,Crisci E,Andersson J,et al. Impaired NK cell activation and chemotaxis toward dendritic cells exposed to complement-opsonized HIV-1[J]. J Immunol,2015,195(4):1698-1704. doi: 10.4049/jimmunol.1500618
|
[37]
|
Flórez-Álvarez L,Hernandez J C,Zapata W. NK cells in HIV-1 infection: from basic science to vaccine strategies[J]. Front Immunol,2018,9:2290. doi: 10.3389/fimmu.2018.02290
|
[38]
|
Furtado Milão J,Love L,Gourgi G,et al. Natural killer cells induce HIV-1 latency reversal after treatment with pan-caspase inhibitors[J]. Front Immunol,2022,13:1067767. doi: 10.3389/fimmu.2022.1067767
|
[39]
|
Rossi F W,Prevete N,Rivellese F,et al. HIV-1 Nef promotes migration and chemokine synthesis of human basophils and mast cells through the interaction with CXCR4[J]. Clin Mol Allergy,2016,14:15. doi: 10.1186/s12948-016-0052-1
|
[40]
|
Dai M,Wang X,Li J L,et al. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages[J]. Faseb j,2015,29(12):4978-4988. doi: 10.1096/fj.15-273128
|
[41]
|
Temerozo J R,Joaquim R,Regis E G,et al. Macrophage resistance to HIV-1 infection is enhanced by the neuropeptides VIP and PACAP[J]. PLoS One,2013,8(6):e67701. doi: 10.1371/journal.pone.0067701
|
[42]
|
Gornalusse G G,Valdez R,Fenkart G,et al. Mechanisms of endogenous HIV-1 reactivation by endocervical epithelial cells[J]. J Virol,2020,94(9):e01904-e01919.
|
[43]
|
Shang L,Duan L,Perkey K E,et al. Epithelium-innate immune cell axis in mucosal responses to SIV[J]. Mucosal Immunol,2017,10(2):508-519. doi: 10.1038/mi.2016.62
|
[44]
|
Coelho A V C,Gratton R,Melo J P B,et al. HIV-1 infection transcriptomics: Meta-Analysis of CD4+ T cells gene expression profiles[J]. Viruses,2021,13(2):244. doi: 10.3390/v13020244
|
[45]
|
Sun B,da Costa K A S,Alrubayyi A,et al. HIV/HBV coinfection remodels the immune landscape and natural killer cell ADCC functional responses[J]. Hepatology,2024,80(3):649-663. doi: 10.1097/HEP.0000000000000877
|
[46]
|
Fisher B S,Green R R,Brown R R,et al. Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART[J]. PLoS Pathog,2018,14(2):e1006871. doi: 10.1371/journal.ppat.1006871
|
[47]
|
Roscic-Mrkic B,Fischer M,Leemann C,et al. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement[J]. Blood,2003,102(4):1169-1177. doi: 10.1182/blood-2003-02-0488
|
[48]
|
Del Corno M,Liu Q H,Schols D,et al. HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent,pertussis toxin-insensitive chemokine receptor signaling[J]. Blood,2001,98(10):2909-2916. doi: 10.1182/blood.V98.10.2909
|
[49]
|
Zhang R Z,Kane M. Insights into the role of HIV-1 Vpu in modulation of NF-ĸB signaling pathways[J]. mBio,2023,14(4):e0092023.
|
[50]
|
Wang H,Liu Y,Huan C,et al. NF-κB-interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling[J]. J Virol,2020,94(17):e01057-20.
|
[51]
|
Chan J K,Greene W C. NF-κB/Rel: Agonist and antagonist roles in HIV-1 latency[J]. Curr Opin HIV AIDS,2011,6(1):12-18. doi: 10.1097/COH.0b013e32834124fd
|
[52]
|
O'Connell P,Pepelyayeva Y,Blake M K,et al. SLAMF7 is a critical negative regulator of IFN-α-mediated CXCL10 production in chronic HIV infection[J]. J Immunol,2019,202(1):228-238. doi: 10.4049/jimmunol.1800847
|
[53]
|
Sturt A S,Webb E L,Patterson C,et al. Cervicovaginal immune activation in zambian women with female genital schistosomiasis[J]. Front Immunol,2021,12:620657. doi: 10.3389/fimmu.2021.620657
|
[54]
|
Chen J,He Y,Zhong H,et al. Transcriptome analysis of CD4(+) T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity[J]. Virol Sin,2023,38(3):398-408. doi: 10.1016/j.virs.2023.03.001
|
[55]
|
Blondin-Ladrie L,Fourcade L,Modica A,et al. Monocyte gene and molecular expression profiles suggest distinct effector and regulatory functions in beninese HIV highly exposed seronegative female commercial sex workers[J]. Viruses,2022,14(2):361. doi: 10.3390/v14020361
|
[56]
|
Vanpouille C,Wells A,Wilkin T,et al. Sex differences in cytokine profiles during suppressive antiretroviral therapy[J]. Aids,2022,36(9):1215-1222.
|
[57]
|
Ao Z,Wang L,Mendoza E J,et al. Incorporation of ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses[J]. PLoS One,2019,14(5):e0216949. doi: 10.1371/journal.pone.0216949
|
[58]
|
Hunegnaw R,Helmold Hait S,Enyindah-Asonye G,et al. A mucosal adenovirus prime/systemic envelope boost vaccine regimen elicits responses in cervicovaginal and alveolar macrophages of rhesus macaques associated with delayed SIV acquisition and B cell help[J]. Front Immunol,2020,11:571804. doi: 10.3389/fimmu.2020.571804
|
[59]
|
Ka'e A C,Nanfack A J,Ambada G,et al. Inflammatory profile of vertically HIV-1 infected adolescents receiving ART in cameroon: A contribution toward optimal pediatric HIV control strategies[J]. Front Immunol,2023,14:1239877. doi: 10.3389/fimmu.2023.1239877
|
[60]
|
Petkov S,Herrera C,Else L,et al. Mobilization of systemic CCL4 following HIV pre-exposure prophylaxis in young men in Africa[J]. Front Immunol,2022,13:965214. doi: 10.3389/fimmu.2022.965214
|