Efficacy Observation of Lower Limb Exoskeleton Rehabilitation Robot Combined with Balance Assessment and Training System in the Treatment of Post-Cerebral Infarction Balance Dysfunction
-
摘要:
目的 探究下肢外骨骼康复机器人联合平衡评估训练系统在改善患者脑梗死后平衡功能障碍的临床疗效。 方法 纳入2024年1月—2024年12月于深圳市龙岗区人民医院住院治疗的病情稳定的126名脑梗死患者,根据计算机随机数法将患者分为下肢外骨骼康复机器人组(n = 42),平衡评估与训练系统组(n = 42)和综合治疗组(n = 42)。比较三组患者的临床资料、临床疗效、治疗前后平衡测试相关参数、肌电特征及Berg平衡量表(berg balance scale,BBS)、Fugl-Meyer评分量表(fugl-meyer assessment,FMA)、Barthel指数(barthel index,BI)、蒙特利尔认知评估量表(montreal cognitive assessment,MoCA)等指标。采用主效应检验分析时间及治疗方式对平衡测试相关参数、肌电特征的影响情况。对治疗前后BBS、FMA、BI、MoCA评分与平衡测试相关参数、肌电特征进行相关性分析。采用双重差分模型对BBS、FMA、BI、MoCA评分进行分析。 结果 下肢外骨骼康复机器人组总有效率为71.43%,平衡评估与训练系统组为76.19%,综合治疗组为95.24%,明显高于其他两组(P < 0.05)。比较三组患者治疗前后的平衡测试相关参数、肌电特征,治疗后,三组患者的平衡测试相关参数、AEMG及MPF下降率均呈现下降趋势,而复杂度呈现上升趋势(P < 0.05),且综合治疗组差异明显(P < 0.05)。治疗后,三组患者BBS、FMA、BI、MoCA评分明显上升(P < 0.05),且综合治疗组患者评分上升幅度更为明显(P < 0.05)。Pearson相关分析结果表明,治疗前后平衡仪测试相关参数、肌电特征指标之间均相关,且治疗后各参数均与BBS、FMA、BI、MoCA评分均相关(P < 0.05)。双重差分模型分析结果显示,组别与治疗前后的交互效应对BBS、FMA、BI、MoCA评分具有明显影响(P < 0.05)。 结论 下肢外骨骼机器人联合平衡训练可有效地改善脑梗患者的平衡、运动及认知功能,且更精准、安全、经济。 -
关键词:
- 脑梗死 /
- 平衡功能障碍 /
- 下肢外骨骼康复机器人 /
- 平衡评估训练系统
Abstract:Objective To explore the clinical efficacy of the lower extremity exoskeleton rehabilitation robot combined with the balance assessment training system in improving balance dysfunction in patients after cerebral infarction. Methods A total of 126 patients with stable cerebral infarction who were hospitalized in Longgang District People's Hospital of Shenzhen from January 2024 to December 2024 were included. According to the computer random number method, the patients were divided into the lower extremity exoskeleton rehabilitation robot group (n = 42), the balance assessment and training system group (n = 42), and the comprehensive treatment group (n = 42). The clinical data, clinical efficacy, relevant parameters of balance test before and after treatment, electromyography characteristics, berg balance scale (BBS), and Fugl-Meyer assessment of the three groups of patients were compared. Indicators such as FMA, barthel index (BI), and montreal cognitive assessment (MoCA). The main effect test was used to analyze the influence of time and treatment methods on the relevant parameters of the balance test and the electromyographic characteristics. Correlation analysis was conducted on the BBS, FMA, BI, MoCA scores before and after treatment, as well as the parameters related to the balance test and the electromyographic characteristics. The difference-in-differences model was adopted to analyze the scores of BBS, FMA, BI and MoCA. Results The total effective rate of the lower limb exoskeleton rehabilitation robot group was 71.43%, that of the balance assessment and training system group was 76.19%, and that of the comprehensive treatment group was 95.24%, which was significantly higher than the other two groups (P < 0.05). The balance test-related parameters and electromyographic characteristics of the three groups of patients before and after treatment were compared. After treatment, the balance test-related parameters, AEMG and MPF decline rates of the three groups of patients all showed a downward trend, while the complexity showed an upward trend (P < 0.05), and the difference in the comprehensive treatment group was significant (P < 0.05). After treatment, the scores of BBS, FMA, BI and MoCA in the three groups of patients increased significantly (P < 0.05), and the increase in the scores of the patients in the comprehensive treatment group was more obvious (P < 0.05). The results of Pearson correlation analysis indicated that the relevant parameters of the balance instrument test and the electromyographic characteristic indicators were all correlated before and after treatment, and each parameter was correlated with the BBS, FMA, BI, and MoCA scores after treatment (P < 0.05). The results of the difference-in-differences model analysis showed that the group and the interaction effect before and after treatment had a significant impact on the BBS, FMA, BI, and MoCA scores (P < 0.05). Conclusion Lower limb exoskeleton robots combined with balance training can effectively improve the balance, motor and cognitive functions of patients with cerebral infarction, and it is more accurate, safe and economical. -
表 1 三组患者临床资料比较[n(%)/($ \bar x \pm s $)]
Table 1. Comparison of clinical data of the three groups of patients[n(%)/($ \bar x \pm s $)]
项目 下肢外骨骼康复机器人组
(n = 42)平衡评估与训练系统组
(n = 42)综合治疗组
(n = 42)F/χ2 P 性别 0.952 0.621 男 27(64.29) 31(73.81) 28(66.67) 女 15(35.71) 11(26.19) 14(33.33) 年龄(岁) 60.98 ± 4.62 61.38 ± 5.34 62.52 ± 6.23 0.915 0.403 BMI(kg/m2) 23.54 ± 1.47 23.78 ± 1.44 23.81 ± 1.73 0.402 0.670 病程(d) 43.24 ± 16.07 44.67 ± 16.17 47.02 ± 13.07 0.667 0.515 病因 2.007 0.919 动脉粥样硬化性脑梗死 24(57.14) 25(59.52) 21(50.00) 心源性脑梗死 10(23.81) 11(26.19) 13(30.95) 小动脉闭塞性脑梗死 7(16.67) 4(9.53) 6(14.29) 其他 1(2.38) 2(4.76) 2(4.76) 吸烟史 1.500 0.472 是 13(30.95) 17(40.48) 12(28.57) 否 29(69.05) 25(59.52) 30(71.43) 饮酒史 1.333 0.513 是 20(47.62) 19(45.24) 24(57.14) 否 22(52.38) 23(54.76) 18(42.86) 偏瘫部位 0.456 0.796 左 23(54.76) 26(61.90) 24(57.14) 右 19(45.24) 16(38.10) 18(42.86) 步频(steps/min) 58.33±10.69 57.79 ± 12.43 57.77 ± 10.53 0.033 0.967 步行周期(s) 2.31 ± 0.41 2.23 ± 0.46 2.27 ± 0.36 0.372 0.690 步幅(cm) 52.91 ± 7.15 54.86 ± 6.42 52.14 ± 6.49 1.836 0.164 步速(cm/s) 29.00 ± 6.13 29.30 ± 7.09 27.26 ± 7.03 1.113 0.332 步长对称性比 1.54 ± 0.43 1.61 ± 0.57 1.55 ± 0.62 0.368 0.693 踝最大背屈角度(°) 7.49 ± 1.87 7.88 ± 1.84 7.41 ± 1.94 0.759 0.470 表 2 三组患者临床疗效比较[n(%),n = 42]
Table 2. Comparison of clinical efficacy among the three groups of patients [n(%),n = 42]
组别 痊愈 显效 有效 无效 总有效率 下肢外骨骼康复机器人组 2(4.76) 15(35.71) 13(30.96) 12(28.57) 71.43 平衡评估与训练系统组 3(7.14) 17(40.48) 12(28.57) 10(23.81) 76.19 综合治疗组 15(35.71)∆# 19(45.24) 6(14.29)∆# 2(4.76)∆# 95.24∆# H/χ2 9.824 8.647 P 0.007* 0.013* *P < 0.05;与下肢外骨骼康复机器人组比较,∆P < 0.05;与平衡评估与训练系统组比较,#P < 0.05。 表 3 三组患者治疗前后平衡测试相关参数比较($\bar x \pm s $)
Table 3. Comparison of relevant parameters of balance tests before and after treatment in the three groups of patients($\bar x \pm s $)
项目 X轴轨迹长
(cm)X轴最大动摇径
(cm)Y轴轨迹长
(cm)Y轴最大动摇径
(cm)包络面积
(cm2)下肢外骨骼康复机器人组
(n = 42)治疗前 3.52 ± 0.75 7.87 ± 1.03 4.67 ± 0.84 7.71 ± 0.47 48.57 ± 8.18 治疗10次后 3.11 ± 0.730 7.47 ± 0.87 3.90 ± 0.720 7.06 ± 0.540 45.79 ± 6.99 治疗20次后 2.29 ± 0.5601 6.21 ± 0.6001 3.65 ± 0.840 6.62 ± 0.4101 44.44 ± 6.270 F 35.076 43.423 18.456 55.669 3.603 P <0.001* <0.001* <0.001* <0.001* 0.030* 平衡评估与训练系统组
(n = 42)治疗前 3.40 ± 0.96 7.56 ± 0.99 4.62 ± 0.87 7.64 ± 0.59 49.26 ± 8.49 治疗10次后 3.12 ± 0.83 6.62 ± 0.770∆ 4.09 ± 0.740 7.03 ± 0.570 45.56 ± 8.120 治疗20次后 2.14 ± 0.7201 6.23 ± 0.6001 3.38 ± 0.9101 6.40 ± 0.4301 42.68 ± 6.570 F 25.847 30.469 22.871 56.462 7.657 P <0.001* <0.001* <0.001* <0.001* 0.001* 综合治疗组(n = 42) 治疗前 3.48 ± 0.95 7.52 ± 0.82 4.92 ± 0.98 7.67 ± 0.44 51.62 ± 6.46 治疗10次后 2.38 ± 0.440∆# 6.27 ± 0.570∆# 3.19 ± 0.670∆# 6.01 ± 0.610∆# 42.07 ± 6.210∆# 治疗20次后 1.47 ± 0.3301∆# 5.59 ± 0.3101∆# 2.43 ± 0.7301∆# 4.79 ± 0.6401∆# 33.76 ± 6.9101∆# F 105.927 110.431 105.644 269.975 78.598 P <0.001* <0.001* <0.001* <0.001* <0.001* *P < 0.05;与下肢外骨骼康复机器人组比较,∆P < 0.05;与平衡评估与训练系统组比较,#P < 0.05;与治疗前比较,0P < 0.05;与治疗10次后比较,1P < 0.05。 表 4 三组患者治疗前后步态周期内肌电特征比较($\bar x \pm s $)
Table 4. Comparison of electromyographic characteristics within gait cycles before and after treatment in the three groups of patients ($\bar x \pm s $)
项目 AEMG(%) MPF下降率(%) 复杂度(%) 胫骨前肌 股二头肌 股二头肌 胫骨前肌 股直肌 下肢外骨骼康复机器人组
(n = 42)治疗前 1.35 ± 0.54 0.98 ± 0.15 0.26 ± 0.11 0.53 ± 0.08 0.51 ± 0.06 治疗10次后 1.26 ± 0.48 0.93 ± 0.14 0.22 ± 0.09 0.56 ± 0.09 0.53 ± 0.06 治疗20次后 1.19 ± 0.44 0.93 ± 0.17 0.20 ± 0.080 0.61 ± 0.1001 0.56 ± 0.0601 F 1.133 1.479 4.421 8.400 7.389 P 0.325 0.232 0.014* <0.001* 0.001* 平衡评估与训练系统组
(n = 42)治疗前 1.23 ± 0.46 0.96 ± 0.09 0.24 ± 0.08 0.53 ± 0.09 0.49 ± 0.06 治疗10次后 1.27 ± 0.460 0.90 ± 0.140 0.20 ± 0.060 0.55 ± 0.08 0.51 ± 0.05 治疗20次后 1.08 ± 0.44 0.79 ± 0.1601∆ 0.18 ± 0.050 0.58 ± 0.090 0.53 ± 0.060∆ F 2.050 17.572 9.408 3.531 5.196 P 0.133 <0.001* <0.001* 0.032* 0.007* 综合治疗组(n = 42) 治疗前 1.26 ± 0.54 1.00 ± 0.11 0.24 ± 0.06 0.54 ± 0.07 0.52 ± 0.07 治疗10次后 1.05 ± 0.360∆# 0.82 ± 0.160∆# 0.17 ± 0.060∆# 0.67 ± 0.080∆# 0.61 ± 0.070∆# 治疗20次后 0.82 ± 0.1701∆# 0.59 ± 0.1801∆# 0.10 ± 0.0401∆# 0.69 ± 0.080∆# 0.63 ± 0.080∆# F 13.558 75.912 70.159 47.220 26.704 P <0.001* <0.001* <0.001* <0.001* <0.001* *P < 0.05;与下肢外骨骼康复机器人组比较,∆P < 0.05;与平衡评估与训练系统组比较,#P < 0.05;与治疗前比较,0P < 0.05;与治疗10次后比较,1P < 0.05。 表 5 三组患者治疗期间平衡仪测试相关参数、肌电特征的重复测量方差分析
Table 5. Repeated measures analysis of variance of relevant parameters and electromyographic characteristics tested by the balance instrument during treatment in the three groups of patients
指标 时间效应 组间效应 交互效应 F P F P F P X轴轨迹长 64.547 <0.001* 40.685 <0.001* 20.146 <0.001* X轴最大动摇径 56.587 <0.001* 39.004 <0.001* 19.313 <0.001* Y轴轨迹长 29.459 <0.001* 27.596 <0.001* 18.503 <0.001* Y轴最大动摇径 32.577 <0.001* 23.621 <0.001* 14.794 <0.001* 包络面积 54.532 <0.001* 39.856 <0.001* 34.223 <0.001* AEMG-胫骨前肌 40.592 <0.001* 31.456 <0.001* 57.632 <0.001* AEMG-股二头肌 41.089 <0.001* 32.279 <0.001* 20.263 <0.001* MPF下降率-股二头肌 58.343 <0.001* 31.899 <0.001* 26.729 <0.001* 复杂度-胫骨前肌 43.174 <0.001* 22.909 <0.001* 13.987 <0.001* 复杂度-股直肌 36.207 <0.001* 30.735 <0.001* 16.296 <0.001* *P < 0.05。 表 6 平衡测试相关参数和肌电特征的简单效应分析结果
Table 6. Simple effects analysis results of balance test-related parameters and EMG characteristics
指标 时间点 组间比较
(F值)组间比较
(P值)综合治疗组
时间效应(P值)下肢外骨骼康复机器
人组时间效应(P值)平衡训练组
时间效应(P值)X轴轨长 治疗20次后 28.643 <0.001* <0.001* <0.001* 0.006* X轴最大动摇径 治疗20次后 25.913 <0.001* <0.001* <0.001* <0.001* Y轴轨迹长 治疗20次后 22.372 <0.001* <0.001* <0.001* <0.001* Y轴最大动摇径 治疗20次后 31.254 <0.001* <0.001* <0.001* <0.001* 包络面积 治疗20次后 29.183 <0.001* <0.001* <0.001* <0.001* AEMG-胫骨前肌 治疗20次后 18.421 <0.001* <0.001* <0.001* <0.001* AEMG-股二头肌 治疗20次后 26.732 <0.001* <0.001* <0.001* <0.001* MPF下降率-股二头肌 治疗20次后 21.564 <0.001* <0.001* 0.022* 0.019* 复杂度-胫骨前肌 治疗20次后 19.843 <0.001* <0.001* <0.001* <0.001* 复杂度-股直肌 治疗20次后 23.173 <0.001* <0.001* <0.001* <0.001* *P < 0.05;组间比较为综合治疗组与其他两组的比较;时间效应为组内治疗前vs治疗20次后的比较。 表 7 三组患者治疗前后的BBS、FMA、BI、MoCA评分比较($\bar x \pm s $)
Table 7. Comparison of BBS,FMA,BI and MoCA scores of the three groups of patients before and after treatment($\bar x \pm s $)
项目 下肢外骨骼康复机器人组
(n = 42)平衡评估与训练系统组
(n = 42)综合治疗组
(n = 42)F P BBS评分(分) 治疗前 14.83 ± 2.11 14.64 ± 2.07 15.36 ± 2.20 1.273 0.284 治疗20次后 16.83 ± 2.550 17.64 ± 2.820 32.05 ± 1.750∆# 527.640 <0.001* FMA评(分) 治疗前 15.12 ± 0.71 15.19 ± 0.74 14.95 ± 0.76 1.155 0.319 治疗20次后 18.93 ± 1.490 19.55 ± 1.520 25.33 ± 1.930∆# 190.446 <0.001* BI评分(分) 治疗前 38.52 ± 2.48 38.07 ± 3.39 37.55 ± 3.21 1.076 0.344 治疗20次后 44.57 ± 3.680 44.79 ± 4.120 72.14 ± 5.060∆# 564.634 <0.001* MoCA评(分) 治疗前 17.10 ± 1.03 17.24 ± 1.54 16.91 ± 1.87 0.507 0.603 治疗20次后 20.55 ± 1.880 22.05 ± 2.350∆ 25.36 ± 2.560∆# 49.038 <0.001* *P < 0.05;与下肢外骨骼康复机器人组比较,∆P < 0.05;与平衡评估与训练系统组比较,#P < 0.05;与治疗前比较,0P < 0.05;与治疗10次后比较,1P < 0.05。 表 8 组合治疗组与下肢外骨骼康复机器人组双重差分模型分析
Table 8. difference-in-differences model analysis of the combined treatment group and the lower extremity exoskeleton rehabilitation robot group
自变量 BBS评分 FMA评分 BI评分 MoCA评分 β1 P β2 P β3 P β4 P 组别(1=综合治疗组,0=下肢外骨骼康复机器人组) 0.532 0.218 0.175 0.319 0.971 0.207 0.198 0.576 治疗前后(1=治疗后,0=治疗前) 16.691 0.019* 10.384 0.024* 37.596 0.016* 6.659 0.003* 组别*治疗前后(交互项) 14.219 <0.001* 6.571 <0.001* 31.543 <0.001* 3.206 <0.001* 年龄 0.085 0.337 0.079 0.364 0.142 0.509 0.038 0.604 性别 0.174 0.791 0.031 0.603 0.031 0.894 0.145 0.597 病程 0.165 0.841 0.118 0.836 0.126 0.728 0.153 0.686 注:*P < 0.05;模型调整了年龄、性别、病程、病因、偏瘫部位、基线BBS评分、基线FMA评分、基线BI评分、基线MoCA评分。 表 9 组合治疗组与平衡评估与训练系统组双重差分模型分析
Table 9. difference-in-differences model analysis of the combined treatment group and the balance assessment and training system group
自变量 BBS评分 FMA评分 BI评分 MoCA评分 β1 P β2 P β3 P β4 P 组别(1=综合治疗组,0=平衡评估与训练系统组) 0.726 0.293 0.241 0.524 0.529 0.781 0.335 0.286 治疗前后(1=治疗后,0=治疗前) 16.257 0.016* 10.298 0.029* 36.571 0.037* 6.845 0.006* 组别*治疗前后(交互项) 13.619 <0.001* 5.934 <0.001* 29.857 <0.001* 2.034 <0.001* 年龄 0.129 0.494 0.119 0.718 0.056 0.282 0.021 0.543 性别 0.028 0.338 0.094 0.463 0.048 0.749 0.133 0.405 病程 0.096 0.873 0.013 0.816 0.086 0.681 0.072 0.667 *P < 0.05;模型调整了年龄、性别、病程、病因、偏瘫部位、基线BBS评分、基线FMA评分、基线BI评分、基线MoCA评分。 -
[1] Rao Z, Tan W, Wang J, et al. Predictive value of Cmmi-MHR combined with thromboelastography parameters in acute cerebral infarction[J]. BMC Med Imag, 2024, 24(1): 115. doi: 10.1186/s12880-024-01299-0 [2] Guo S, Lin Y, Ma X, et al. Long-term safety and efficacy of antiplatelet therapy in patients with cerebral infarction with thrombocytopenia[J]. Clin Appl Thromb Hemost, 2021, 27: 1076029620980067. [3] 王心愿, 邱纪方. 虚拟现实技术促进脑卒中下肢功能及其皮层调控研究进展[J]. 中国康复医学杂志, 2022, 37(1): 131-134. doi: 10.3969/j.issn.1001-1242.2022.01.026 [4] Su D, Hu Z, Wu J, et al. Review of adaptive control for stroke lower li-mb exoskeleton rehabilitation robot based on motion intention recognition[J]. Front Neurorobot, 2023, 17: 1186175. doi: 10.3389/fnbot.2023.1186175 [5] 刘瑞平, 欧阳钧. 下肢外骨骼康复机器人的发展和应用[J]. 中山大学学报: 医学科学版, 2023, 44(2): 354-360. doi: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0222 [6] Unal A, Altug F, Tikac G, et al. Effectiveness of matrix-rhythm therapy on increased muscle tone, balance and gait parameters in stroke survivors: A single-blinded, randomized, controlled clinical trial[J]. Acta Neurol Belg, 2021, 121(3): 689-699. doi: 10.1007/s13760-020-01391-6 [7] 常万鹏, 张钟文, 杨钰琳, 等. 康复外骨骼机器人对脑卒中下肢运动功能障碍疗效的Meta分析[J]. 中国组织工程研究, 2024, 28(2): 321-328. [8] 张玉代, 邹双骏, 马莉, 等. 下肢康复机器人联合姿势控制训练对脑卒中患者下肢运动功能的影响[J]. 机器人外科学杂志(中英文), 2025, 6(7): 1192-1197. doi: 10.12180/j.issn.2096-7721.2025.07.020 [9] 曾进胜, 蒲传强. 我国各类主要脑血管病诊断要点演变与更新[J]. 中华神经科杂志, 2019, 52(9): 681-683. doi: 10.3760/cma.j.issn.1006?7876.2019.09.001 [10] Thamsuwan O, Galvin K, Palmandez P, et al. Commonly used subjective effort scales may not predict directly measured physical workloads and fat-igue in hispanic farmworkers[J]. Int J Environ Res Public Health, 2023, 20(4): 2809. doi: 10.3390/ijerph20042809 [11] 王战斌, 陈思婧. 下肢外骨骼机器人临床康复应用进展[J]. 康复医学, 2021, 39(2): 26-27. [12] 解二康, 从洋洋, 王瑜元, 等. 基于下肢康复机器人的双任务训练对脑卒中患者下肢运动及步行能力的影响[J]. 中华物理医学与康复杂志, 2024, 46(2): 112-117. doi: 10.3760/cma.j.issn.0254-1424.2024.02.003 [13] 徐冬艳, 王卫宁, 潘力, 等. 基于丰富环境理论的多感官反馈步态训练对脑卒中患者步行功能的效果[J]. 中国康复理论与实践, 2024, 30(5): 526-534. [14] 张先卓, 吕萌, 罗旭飞, 等. 脑卒中康复临床实践指南推荐意见研究[J]. 中国康复理论与实践, 2020, 26(2): 170-180. doi: 10.3969/j.issn.1006-9771.2020.02.007 [15] 周洪雨, 孟兆祥, 金星, 等. 卒中后认知障碍患者的执行功能特征及其早期预测标志物的探索[J]. 中华物理医学与康复杂志, 2024, 46(6): 518-523. [16] 许明珠, 林润, 温华能, 等. 基于表面肌电图分析靳三针结合镜像疗法治疗脑梗死下肢功能障碍的效果研究[J]. 中国全科医学, 2023, 26(17): 7. [17] Du X, Liu Q, Li Q, et al. Prognostic value of cerebral infarction coeffici-ent in patients with massive cerebral infarction[J]. Clin Neurol Neurosurg, 2020, 196: 106009. doi: 10.1016/j.clineuro.2020.106009 [18] Liu S, Yu H, Wang Z, et al. Correlation analysis of balance function with plantar pressure distribution and gait parameters in patients with cerebral infarction in the basal ganglia region[J]. Front Neurosci, 2023, 17: 1099843. doi: 10.3389/fnins.2023.1099843 [19] Bian M, Shen Y, Huang Y, et al. A non-immersive virtual reality-based i-ntervention to enhance lower-extremity motor function and gait in patie-nts with subacute cerebral infarction: A pilot randomized controlled trial with 1-year follow-up[J]. Front Neurol, 2022, 13: 985700. doi: 10.3389/fneur.2022.985700 [20] 张凤林, 舒红燕, 任蕾蕾, 等. 改良五禽戏治疗老年脑卒中患者步态及平衡功能障碍的疗效及基于功能磁共振的脑机制研究[J]. 实用医学杂志, 2023, 39(9): 1174-1178. [21] 董柯, 练涛. 经颅直流电刺激对脑卒中患者平衡功能影响的研究进展[J]. 中国康复医学杂志, 2022, 37(10): 1425-1429. [22] 王海静, 高崇, 李庆雯. 运动双任务训练对慢性脑卒中患者平衡功能的影响[J]. 中国康复医学杂志, 2021, 36(9): 1111-1117. [23] 朱志伟, 唐春霞, 徐立娟, 等. 脑卒中患者下肢外骨骼康复机器人步态规划与运动学仿真[J]. 机械设计与制造, 2022, 1(1): 247-250+256. [24] 李明, 李慧, 喻洪流. 下肢外骨骼康复机器人的分类及其应用现状[J]. 生物医学工程学杂志, 2024, 41(04): 833-839. [25] 何蕾, 柴双双, 陈亚平. 平衡评估训练系统对脑卒中后平衡功能的康复效果[J]. 中国康复理论与实践, 2021, 27(7): 5. [26] 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 中国康复理论与实践, 2023, 29(8): 890-895. [27] 张明霞, 黄婷婷, 黎力生, 等. 经颅磁刺激治疗联合任务导向性训练对老年脑梗死患者肢体功能及日常生活能力的影响[J]. 中国老年学杂志, 2022, 42(20): 5057-5059. [28] Tatsuno H, Hamaguchi T, Sasanuma J, et al. Does a combination treatme-nt of repetitive transcranial magnetic stimulation and occupational therapy improve upper limb muscle paralysis equally in patients with chronic stroke ca-used by cerebral hemorrhage and infarction?: A retrospective cohort study[J]. Medicine, 2021, 100(24): e26339. doi: 10.1097/MD.0000000000026339 [29] Liang F F, Liu X X, Liu J H, et al. Effect of infarct location and volu-me on cognitive dysfunction in elderly patients with acute insular cerebral infarction[J]. World J Psychiatry, 2024, 14(8): 1190-1198. doi: 10.5498/wjp.v14.i8.1190 -
下载: