留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯纳米片的制备及其对生物硫醇的便携式比色测定

王焮 魏钰卜 李玉鹏 姚家灿 喻芳

王焮, 魏钰卜, 李玉鹏, 姚家灿, 喻芳. 氧化石墨烯纳米片的制备及其对生物硫醇的便携式比色测定[J]. 昆明医科大学学报.
引用本文: 王焮, 魏钰卜, 李玉鹏, 姚家灿, 喻芳. 氧化石墨烯纳米片的制备及其对生物硫醇的便携式比色测定[J]. 昆明医科大学学报.
Xin WANG, Yubo WEI, Yupeng LI, Jiacan YAO, Fang YU. Preparation of Graphene Oxide Nanosheets and Their Portable Colorimetric Determination of Biothiols[J]. Journal of Kunming Medical University.
Citation: Xin WANG, Yubo WEI, Yupeng LI, Jiacan YAO, Fang YU. Preparation of Graphene Oxide Nanosheets and Their Portable Colorimetric Determination of Biothiols[J]. Journal of Kunming Medical University.

氧化石墨烯纳米片的制备及其对生物硫醇的便携式比色测定

基金项目: 云南省科学技术厅-昆明医科大学基础研究联合专项基金(202401AY070001-217;202301AY070001-212);云南省教育厅科学研究基金(2023Y0796);昆明医科大学硕士研究生创新基金 (2024S018);昆明医科大学大学生创新创业训练计划(2024CYD405)
详细信息
    作者简介:

    王焮(1999~),女,贵州毕节人,在读硕士研究生,主要从事生物比色传感器的研究工作

    通讯作者:

    姚家灿,E-mail:739593259@qq.com

    喻芳,E-mail:yufang519@163.com

  • 中图分类号: O656.3

Preparation of Graphene Oxide Nanosheets and Their Portable Colorimetric Determination of Biothiols

  • 摘要:   目的  开发一种能够实时、快速、可视化检测生物硫醇(MEs)的方法,为疾病的早期诊断和评估提供有力手段。  方法  通过改良的Hummers方法制备具有优异的类过氧化物酶活性(POD-like)的片状氧化石墨烯(2D GO),并将比色法与智能手机集成构建快速可视化检测MEs的传感策略。  结果  2D GO能够催化过氧化氢(H2O2)分解产生具有强氧化性的羟基自由基(·OH),进而将无色3,3',5,5'-四甲基联苯胺(3,3',5,5'-tetramethylbenzidine,TMB)氧化为蓝色的ox-TMB,结合MEs的强还原作用对“2D GO+TMB+H2O2”比色传感体系显色效果的抑制作用实现了对MEs的快速可视化检测。  结论  基于2D GO所构建的比色平台具有较宽的线性检测范围(10~1000 μmol/L)以及良好的检测限(LOD < 7 μM),并成功用于测定胎牛血清样品中的MEs,回收率表现良好。
  • 图  1  比色机理图

    Figure  1.  Colourimetric mechanism diagram

    图  2  材料的表征及类酶活性验证

    A:2D GO的TEM图像;B:不同溶液体系的紫外-可见吸收光谱图,从上到下依次为a. TMB+H2O2+2D GO;b. TMB+H2O2;c. TMB;d. TMB+GO。

    Figure  2.  Characterisation of the materials and validation of enzyme-like activity

    图  3  实验条件的优化

    A:pH值;B:温度;C:H2O2浓度;D:2D GO浓度。

    Figure  3.  Optimisation of experimental conditions

    图  4  米氏动力学研究

    A和C:反应速度随H2O2或TMB浓度的变化曲线;B和D:H2O2或TMB相应的Lineweaver-Burk双倒数曲线。

    Figure  4.  Michaelis kinetics studies

    图  5  检测性能的评估

    A~C:TMB+H2O2+2D GO体系中加入不同浓度MEs的紫外-可见吸收光谱图(插图为不同浓度MEs与ΔA的线性关系图);D~F:不同浓度MEs与通过智能手机辅助计算欧氏距离EDs的相关系数图。

    Figure  5.  Evaluation of detection performance

    表  1  米氏常数(Km)和最大反应速率(Vmax)的比较

    Table  1.   Comparison of Michaelis constants ( Km ) and maximum reaction rates ( Vmax

    纳米酶Km (mmol/L)Vmax (10−8 mol/L/s)参考文献
    TMBH2O2TMBH2O2
    HRP0.43403.70010.008.170[20]
    GO-COOH0.023703.9903.453.85[21]
    Casein-CuS0.355234[22]
    H-GNs5.1002.2564.5505.060[23]
    2D GO1.2763.1234.6706.900
    下载: 导出CSV

    表  2  不同方法检测MEs的比较

    Table  2.   Comparison of different methods for detecting MEs

    催化剂方法物质线性范围检出限参考文献
    mBrB毛细管电泳GSH7.5~100 µmol/L1.41 μmol/L[24]
    TCNQ 和 GO协同电化学分析法GSH0.25~124.3 μmol/L,
    124.3 μmol/L~1.67 mmol/L
    0.15 μmol/L[25]
    MNPG荧光法GSH0.2~20 μmol/L0.05 μmol/L[26]
    7 氟苯并-2-氧杂 -1,
    3-二唑-4-磺酸铵
    高效液相色谱Cys、Hcy、
    CysGly、GSH
    0.5 ~15 μmol/L0.10 μmol/L[27]
    BrDMC质谱法GSH1.0~100.0 μmol/L0.4 μmol/L[28]
    2D GO比色法Hcy10~1000 μmol/L0.66 μmol/L本工作
    下载: 导出CSV

    表  3  胎牛血清加标实验中MEs检测结果

    Table  3.   Detection results of MEs in fetal bovine serum spiking assays

    样品加标量 (μmol/L)紫外-可见光谱法手机可视化比色法
    检测(μmol/L)回收率(%)RSD(n=3,%)检测(μmol/L)回收率(%)RSD(n=3,%)
    GSH055.204.37.804.9
    50101.9096.907.060.99105.52.6
    400458.74100.83.3411.82101.00.5
    800851.4299.66.5871.99107.91.0
    Cys013.554.311.154.9
    5060.2094.207.965.90107.84.3
    400411.4799.507.7403.8398.201.4
    800817.99100.56.3716.7888.400.5
    Hcy010.407.211.506.2
    5061.2299.50262.27100.95.6
    400408.9099.501.741199.902.1
    800813.00100.30.4811.4100.11.1
    下载: 导出CSV
  • [1] Dai J,Ma C G,Zhang P,et al. Recent progress in the development of fluorescent probes for detection of biothiols[J]. Dyes Pigm,2020,177(3):108321.
    [2] Yin C X,Xiong K M,Huo F J,et al. Fluorescent probes with multiple binding sites for the discrimination of Cys,Hcy,and GSH[J]. Angew Chem Int Ed Engl,2017,56(43):13188-13198. doi: 10.1002/anie.201704084
    [3] Chen X,Zhou Y,Peng X,et al. Fluorescent and colorimetric probes for detection of thiols[J]. Chem Soc Rev,2010,39(6):2120-2135. doi: 10.1039/b925092a
    [4] Jung H S,Chen X,Kim J S,et al. Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J]. Chem Soc Rev,2013,42(14):6019-6031. doi: 10.1039/c3cs60024f
    [5] Yue Y,Huo F,Ning P,et al. Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells[J]. J Am Chem Soc,2017,139(8):3181-3185. doi: 10.1021/jacs.6b12845
    [6] Xu T,Zhao S J,Wu X L,et al. β-Cyclodextrin-promoted colorimetric and fluorescence turn-on probe for discriminating highly toxic thiophenol from biothiols[J]. ACS Sustain Chem Eng,2020,8(16):6413-6421. doi: 10.1021/acssuschemeng.0c00766
    [7] Chen H,Tang Y G,Lin W Y,et al. Recent progress in the fluorescent probes for the specific imaging of small molecular weight thiols in living cells[J]. Trends Analyt Chem,2016,76:166-181. doi: 10.1016/j.trac.2015.11.014
    [8] Liu X R,Qian M P,Zhang C X,et al. Bis-cyclometalated Ir(III) complex-based electrogenerated chemiluminescence sensor array for discriminating three biothiols[J]. JOAT,2020,4:114-121.
    [9] Li Z H,Li Z H,Sun S G,et al. Design and characterization of methyl mercaptan biosensor using alcohol oxidase[J]. Sens Actuators B Chem,2014,192:680-684. doi: 10.1016/j.snb.2013.10.100
    [10] Shen Y,Yue J,Shi W,et al. Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags[J]. Biosens Bioelectron,2020,151:111957. doi: 10.1016/j.bios.2019.111957
    [11] Tu F Q,Zhang L Y,Guo X F,et al. Dual labeling for simultaneous determination of nitric oxide,glutathione and cysteine in macrophage RAW264.7 cells by microchip electrophoresis with fluorescence detection[J]. J Chromatogr A,2014,1359:309-316. doi: 10.1016/j.chroma.2014.07.026
    [12] Duan W,Qiu Z,Cao S,et al. Pd-Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols[J]. Biosens Bioelectron,2022,196:113724. doi: 10.1016/j.bios.2021.113724
    [13] Wang X Y,Hua Y H,Wei H,et al. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond[J]. Inorg Chem Front,2016,3:41-60. doi: 10.1039/C5QI00240K
    [14] Lin S,Zhang Y,Cao W,et al. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics[J]. Dalton Trans,2019,5,48(6):1993-1999.
    [15] Gao L Z,Zhuang J,Nie L,et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat Nanotechnol,2007,2(9):577-583. doi: 10.1038/nnano.2007.260
    [16] Guo S J,Wang E K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today,2011,6(3):240-264. doi: 10.1016/j.nantod.2011.04.007
    [17] Vashist S K,Luong J H T. Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites[J]. Carbon Lett,2015,84:519-550. doi: 10.1016/j.carbon.2014.12.052
    [18] Reina G,González-Domínguez J M,Criado A,et al. Promises,facts and challenges for graphene in biomedical applications[J]. Chem Soc Rev,2017,46(15):4400-4416. doi: 10.1039/C7CS00363C
    [19] Saleh B D,Abdulwahhab G H,Ahmed S M R. Preparation and characterization of graphene oxide nanoparticles derived from wheat straw[J]. Mater Today,2023,80(2):860-869.
    [20] Wu S,Tian J,Xie N,et al. A sensitive,accurate,and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity[J]. Biofuel Bioprod Biorefin,2022,15(1):15.
    [21] Song Y J,Qu K G,Zhao C,et al. Graphene Oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Adv Mater,2010,22:2206-2210. doi: 10.1002/adma.200903783
    [22] Liu Y,Jin H,Zou W,et al. Protein-mediated sponge-like copper sulfide as an ingenious and efficient peroxidase mimic for colorimetric glucose sensing[J]. RSC Adv,2020,10(48):28819-28826. doi: 10.1039/D0RA05496H
    [23] Guo Y J,Deng L,L J,et al. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano,2011,5(2): 1282-1290.
    [24] Pérez-Rama M,Abalde J,Herrero C,et al. A capillary zone electrophoresis for determination of thiolic peptides in biological samples[J]. J Sep Sci,2009,32(12):2152-2158. doi: 10.1002/jssc.200900104
    [25] Yuan B Q,Xu C Y,Zhang R C,et al. Glassy carbon electrode modified with 7,7,8,8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: Low-potential amperometric detection of reduced glutathione[J]. Biosens Bioelectron,2017,96:1-7. doi: 10.1016/j.bios.2017.04.026
    [26] Zhang H J,Chen J,Yang Y L,et al. Discriminative detection of glutathione in cell lysates based on oxidase-like activity of magnetic nanoporous graphene[J]. Anal Chem,2019,91(8):5004-5010. doi: 10.1021/acs.analchem.8b04779
    [27] Ferin R,Pavão M L,Baptista J. Methodology for a rapid and simultaneous determination of total cysteine,homocysteine,cysteinylglycine and glutathione in plasma by isocratic RP-HPLC[J]. J Chromatogr,2012,911:15-20.
    [28] Feng C H,Huang H Y,Lu C Y. Quantitation of the glutathione in human peripheral blood by matrix-assisted laser desorption ionization time-of-flight mass spectrometry coupled with micro-scale derivatization[J]. Anal Chim Acta,2011,690(2):209-214. doi: 10.1016/j.aca.2011.02.015
    [29] Shi R,Yang J,Cheng S Q,et al. Colorimetric determination of biothiols with AuNPs@MoS2 NSs as peroxidase mimetic enzyme[J]. New J Chem,2022,46:18718-18723. doi: 10.1039/D2NJ03052G
  • [1] 马承娅, 杨江, 陈曦, 徐茜, 尹丕轩, 舒芯, 彭红瑜, 范志祥, 龙莉.  髓过氧化物酶-463G/A基因多态性与彝族原发性高血压的相关性, 昆明医科大学学报. 2024, 45(4): 57-61. doi: 10.12259/j.issn.2095-610X.S20240408
    [2] 代华磊, 胡成成, 张桂敏, 陶四明, 陈建昆.  基于网络药理学和分子对接筛选黄芪治疗高血压心室重构的生物标记物, 昆明医科大学学报. 2023, 44(8): 27-36. doi: 10.12259/j.issn.2095-610X.S20230819
    [3] 李思琪, 邰文琳.  趋化因子CXCL10作为肝硬化生物标志物的意义, 昆明医科大学学报. 2022, 43(7): 55-61. doi: 10.12259/j.issn.2095-610X.S20220711
    [4] 周晶, 霍丽珺, 雷雅燕, 和红兵.  生物膜胞外聚合物研究进展, 昆明医科大学学报. 2021, 42(4): 150-154. doi: 10.12259/j.issn.2095-610X.S20210429
    [5] 杨琳琳, 尹春梅, 张磊, 王薇, 赵凌锋, 杨钰叠, 赵赫, 刘莹.  HPV16E6与吲哚胺2,3-二氧化酶在宫颈病变组织中的表达, 昆明医科大学学报. 2020, 41(12): 68-72. doi: 10.12259/j.issn.2095-610X.S20201219
    [6] 陈红波, 陈丽萍, 金永明, 王丽娜, 朱丽蕊, 沈荣琼.  COPD不同HRCT表型患者血清中性粒细胞弹性蛋白酶、总抗氧化能力比较, 昆明医科大学学报. 2020, 41(12): 108-111. doi: 10.12259/j.issn.2095-610X.S20201229
    [7] 张颖, 王迎松, 解京明, 赵智, 李韬, 毕尼.  重度脊柱侧弯三维有限元模型模拟脊柱后路矫形术生物力学特点, 昆明医科大学学报. 2019, 40(04): 31-36.
    [8] 刘桠名, 徐冕, 颜悦新, 周凤高, 许成, 赵琨, 蒋国云, 武彧, 刘荣.  基于代谢组学的脓毒症大鼠生物标志物研究, 昆明医科大学学报. 2019, 40(06): 16-22.
    [9] 李晓涛, 王海峰, 王剑松.  LASS2生物学功能的研究进展, 昆明医科大学学报. 2019, 40(12): 130-134.
    [10] 邓德耀, 袁文丽, 吴广娟, 陈弟, 李丽莉, 高宗鹰, 刘畅, 顾津伊.  创伤外科耐碳青霉烯类鲍曼不动杆菌碳青霉烯酶基因型检测, 昆明医科大学学报. 2018, 39(06): 113-117.
    [11] 戴青里, 孙贵虎, 闫斌, 郭涛, 戴青原.  过氧化氢诱导HUVECs氧化应激模型的构建, 昆明医科大学学报. 2018, 39(04): 34-39.
    [12] 赵一纯, 曹青青, 邹澄, 胡建林, 徐丽丽, 靳锦, 赵庆.  人参二醇与人参三醇衍生物的氧化及细胞毒活性, 昆明医科大学学报. 2017, 38(10): 11-15.
    [13] 安媛.  血液净化对脓毒性脑病神经元特异性烯醇化酶的影响, 昆明医科大学学报. 2016, 37(02): -.
    [14] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报. 2015, 36(05): -.
    [15] 邓德耀.  重症监护病房耐碳青霉烯类鲍曼不动杆菌碳青霉烯酶基因型的检测, 昆明医科大学学报. 2015, 36(07): -1.
    [16] 王祝君.  β-烯醇化酶基因多态性与COPD骨骼肌萎缩的相关性, 昆明医科大学学报. 2014, 35(12): -1.
    [17] 文小玲.  云南药用植物束花石斛提取物的体外抗氧化活性研究, 昆明医科大学学报. 2014, 35(04): -.
    [18] 陈亚萍.  绿菇抗氧化活性研究, 昆明医科大学学报. 2013, 34(03): -.
    [19] 孙海梅.  缺血后处理对猪急性心肌梗死后的抗氧化作用, 昆明医科大学学报. 2012, 33(04): -.
    [20] 陈亚萍.  干巴菌抗氧化活性研究, 昆明医科大学学报. 2012, 33(01): -.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回