留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

材料结构对骨再生中血管生成的影响

徐云容 何飞

徐云容, 何飞. 材料结构对骨再生中血管生成的影响[J]. 昆明医科大学学报.
引用本文: 徐云容, 何飞. 材料结构对骨再生中血管生成的影响[J]. 昆明医科大学学报.
Yunrong XU, Fei HE. Effect of Material Structure on Angiogenesis in Bone Regeneration[J]. Journal of Kunming Medical University.
Citation: Yunrong XU, Fei HE. Effect of Material Structure on Angiogenesis in Bone Regeneration[J]. Journal of Kunming Medical University.

材料结构对骨再生中血管生成的影响

基金项目: 国家自然科学基金(82160417;82460421);云南省重大科技专项资助项目(202402AD080006);云南省科技厅重点研究计划-昆医联合专项重点资助项目(202101AY070001-013);云南省教育厅科学研究基金(2024Y249;2025Y0373);云岭产业技术领军人才资助项目(YLXL20170046);昆明医科大学研究生创新基金(2024S137);大学生创新训练计划项目(2024CYD387)
详细信息
    作者简介:

    徐云容(1997~ ),男,云南曲靖人,在读硕士研究生,主要从事骨科基础研究工作

    通讯作者:

    何飞,E-mail:hefei197106@163.com

  • 中图分类号: Q819;R649.9

Effect of Material Structure on Angiogenesis in Bone Regeneration

  • 摘要: 骨修复再生目前仍是临床治疗中常见的棘手问题,而骨组织工程近年来发展成为一种可能的骨修复再生替代方案。但骨作为高度血管化的组织,其发育、成熟、重塑和再生与修复再生过程中的血管生成息息相关。既往研究多倾向于材料结构特性对成骨的直接影响,关于材料结构所形成的物理线索对骨再生中血管生成的影响关注不足,而材料结构对于骨再生中血管生成的影响也是一个重要的环节,关系到最终的骨修复成效。阐述了材料结构对骨再生中血管生成的影响,简要介绍了骨再生中血管生成的过程及作用,着重讨论了现今骨组织工程中材料基地刚度、表面形貌、孔结构、空间结构四类主要结构因素对于骨再生中血管生成的影响作用,以期为将来骨修复材料的设计与构建提供借鉴。
  • 图  1  骨修复材料四种不同结构示意图

    Figure  1.  Diagram of four different structures of bone repair materials

    图  2  材料影响血管生长的结构特性

    Figure  2.  Structural properties of materials affecting blood vessel growth

    表  1  材料结构对血管生成的影响

    Table  1.   Effect of material structure on angiogenesis

    材料结构对血管生成的影响
    孔隙率较高的孔隙率有利于血管细胞的长入
    亲水性材料的亲水性越强越有利于血管生长
    表面能材料的表面能越高越有利于血管生长
    粗造度较粗糙表面比较光滑表面有利于血管生长
    孔径大小一定范围内,增加孔径有利于血管生长
    基地刚度相较于较高基地刚度,较低基地刚度有利于血管生长
    微观粒径亚微米级较微米级有利于血管生长
    排列方式有序结构较无序结构有利于血管生长
    空间结构对天然组织的仿生程度越高越有利于血管生长
    孔的互连性孔的互连性越高越有利于血管生长
    下载: 导出CSV
  • [1] 卢承印, 罗志强, 简功辉, 等. H型血管促进成血管-成骨耦联在骨折愈合中作用机制的研究进展[J]. 华中科技大学学报(医学版), 2024, 53(1): 133-139.
    [2] Kong X, Zheng T, Wang Z, et al. Remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues for bone repair[J]. Theranostics, 2024, 14(11): 4438-4461.
    [3] Tsai Y H, Tseng C C, Lin Y C, et al. Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing[J]. Biomedical Journal, 2024, 48(2): 100750.
    [4] Santoro A, Voto A, Fortino L, et al. Bone defect treatment in regenerative medicine: Exploring natural and synthetic bone substitutes[J]. International Journal of Molecular Sciences, 2025, 26(7): 3085.
    [5] Dasari A, Xue J, Deb S. Magnetic nanoparticles in bone tissue engineering[J]. Nanomaterials, 2022, 12(5): 757. doi: 10.3390/nano12050757
    [6] Jin H, Zhu X, Liu H, et al. Type-I collagen polypeptide-based composite nanofiber membranes for fast and efficient bone regeneration[J]. ACS Biomaterials Science & Engineering, 2024, 10(9): 5632-5640.
    [7] Chen K, Wang Y, Tang H, et al. Fabrication of a nanoscale Magnesium/Copper metal-organic framework on Zn-based guided bone generation membranes for enhancing osteogenesis, angiogenesis, and bacteriostasis properties[J]. ACS Applied Materials & Interfaces, 2024, 16(5): 5648-5665.
    [8] 谢庆晟, 于海洋, 马涛, 等. 外泌体在成血管成骨偶联中作用的研究[J]. 中国骨质疏松杂志, 2024, 30(12): 1810-1814.
    [9] Lv N, Zhou Z, Hou M, et al. Research progress of vascularization strategies of tissue-engineered bone[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11(9): 1291969. doi: 10.3389/fbioe.2023.1291969
    [10] Jin S, Wen J, Zhang Y, et al. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis[J]. Acta Biomaterialia, 2024, 177(5): 91-106. doi: 10.1016/j.actbio.2024.01.043
    [11] Liu C, Zhou Y, Sun M, et al. Light-induced cell alignment and harvest for anisotropic cell sheet technology[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36513-36524.
    [12] Nambiar J, Jana S, Nandi S K. Strategies for enhancing vascularization of biomaterial-based scaffold in bone regeneration[J]. The Chemical Record, 2022, 22(6): e202200008. doi: 10.1002/tcr.202200008
    [13] Luo Y, Zheng Y, Chen Z, et al. Proangiogenic effect and underlying mechanism of holmium oxide nanoparticles: A new biomaterial for tissue engineering[J]. Journal of Nanobiotechnology, 2024, 22(1): 357. doi: 10.1186/s12951-024-02642-x
    [14] Wang M, Chen J, Luo Y, et al. Design strategies and application potential of multifunctional hydrogels for promoting angiogenesis[J]. International Journal of Nanomedicine, 2024, 19(11): 12719-12742. doi: 10.2147/IJN.S495971
    [15] 王嘉旎, 陈俊宇. 金属离子促血管生成机制及在骨组织工程中的应用[J]. 中国组织工程研究, 2024, 28(5): 804-812.
    [16] Mahapatra C, Kumar P, Paul M K, et al. Angiogenic stimulation strategies in bone tissue regeneration[J]. Tissue and Cell, 2022, 79(12): 101908. doi: 10.1016/j.tice.2022.101908
    [17] Shi J, Dai W, Gupta A, et al. Frontiers of hydroxyapatite composites in bionic bone tissue engineering[J]. Materials, 2022, 15(23): 8475. doi: 10.3390/ma15238475
    [18] Hayashi K, Munar M L, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration[J]. Materials Science and Engineering: C, 2020, 111(6): 110848. doi: 10.1016/j.msec.2020.110848
    [19] Ortiz R, Aurrekoetxea-Rodrguez I, Rommel M, et al. Laser surface microstructuring of a bio-resorbable polymer to anchor stem cells, control adipocyte morphology, and promote osteogenesis[J]. Polymers, 2018, 10(12): 1337. doi: 10.3390/polym10121337
    [20] 谢小蔓, 付钰澳, 王忠林, 等. 生物力学在调控成骨细胞生物特性机制中的研究进展[J]. 湖北医药学院学报, 2024, 43(6): 702-708.
    [21] Choisez A, Ishihara S, Ishii T, et al. Matrix stiffness regulates the triad communication of adipocytes/macrophages/endothelial cells through CXCL13[J]. Journal of Lipid Research, 2024, 65(9): 100620. doi: 10.1016/j.jlr.2024.100620
    [22] Schunk C T, Wang W, Sabo L N, T et al. Matrix stiffness increases energy efficiency of endothelial cells[J]. Matrix Biology, 2024, 133(11): 77-85. doi: 10.1016/j.matbio.2024.08.004
    [23] Chen W, Tian B, Liang J, et al. Matrix stiffness regulates the interactions between endothelial cells and monocytes[J]. Biomaterials, 2019, 221(11): 119362. doi: 10.1016/j.biomaterials.2019.119362
    [24] Zhang Y, Dai J, Hang R, et al. Tailoring surface stiffness to modulate senescent macrophage immunomodulation: Implications for osteo-/angio-genesis in aged bone regeneration[J]. Biomaterials Advances, 2024, 165(12): 214010. doi: 10.1016/j.bioadv.2024.214010
    [25] Shayan M, Huang M S, Navarro R, et al. Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function[J]. Journal of Biomedical Materials Research Part A, 2023, 111(7): 896-909. doi: 10.1002/jbm.a.37520
    [26] Li Y B, Zhang H Q, Lu Y P, et al. Construction of magnesium phosphate chemical conversion coatings with different microstructures on titanium to enhance osteogenesis and angiogenesis[J]. ACS Applied Materials & Interfaces, 2024, 16(17): 21672-21688.
    [27] Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis[J]. Bioactive Materials, 2023, 20(5): 16-28. doi: 10.1016/j.bioactmat.2022.05.011
    [28] Liu C, Lou Y, Sun Z, et al. 4D printing of personalized-tunable biomimetic periosteum with anisotropic microstructure for accelerated vascularization and bone healing[J]. Advanced Healthcare Materials, 2023, 12(22): e2202868. doi: 10.1002/adhm.202202868
    [29] Kim T H, Kim S H, Leong K W, et al. Nanografted substrata and triculture of human pericytes, fibroblasts, and endothelial cells for studying the effects on angiogenesis[J]. Tissue Engineering Part A, 2016, 22(7-8): 698-706. doi: 10.1089/ten.tea.2015.0461
    [30] Duan R, Zhang Y, van Dijk L, et al. Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates[J]. Materials Science and Engineering: C, 2021, 122(5): 111948. doi: 10.1016/j.msec.2021.111948
    [31] Jin S, Yang R, Chu C, et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration[J]. Acta Biomaterialia, 2021, 129(7): 148-158. doi: 10.1016/j.actbio.2021.05.042
    [32] Patel K D, Kim T H, Mandakhbayar N, et al. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell-and tissue-regulatory responses[J]. Acta Biomaterialia, 2020, 108(5): 97-110. doi: 10.1016/j.actbio.2020.03.012
    [33] Chen Y, Chen S, Kawazoe N, et al. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks[J]. Scientific Reports, 2018, 8(1): 14143. doi: 10.1038/s41598-018-32495-y
    [34] Tian T, Zhang T, Lin Y, et al. Vascularization in craniofacial bone tissue engineering[J]. Journal of Dental Research, 2018, 97(9): 969-976. doi: 10.1177/0022034518767120
    [35] Huang J, Han Q, Cai M, et al. Effect of angiogenesis in bone tissue engineering[J]. Annals of Biomedical Engineering, 2022, 50(8): 898-913. doi: 10.1007/s10439-022-02970-9
    [36] Gu J, Zhang Q, Geng M, et al. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue[J]. Bioactive Materials, 2021, 6(10): 3254-3268. doi: 10.1016/j.bioactmat.2021.02.033
    [37] Zhang M, Huang Z, Wang X, et al. Personalized PLGA/BCL scaffold with hierarchical porous structure resembling periosteum-bone complex enables efficient repair of bone defect[J]. Advanced Science, 2024, 11(35): e2401589.
    [38] Bobbert F S L, Zadpoor A A. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone[J]. Journal of Materials Chemistry B, 2017, 5(31): 6175-6192. doi: 10.1039/C7TB00741H
    [39] Druecke D, Langer S, Lamme E, et al. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy[J]. Journal of Biomedical Materials Research Part A, 2003, 68A(1): 10-18.
    [40] Feng B, Jinkang Z, Zhen W, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecturein vivo[J]. Biomedical Materials, 2011, 6(1): 015007. doi: 10.1088/1748-6041/6/1/015007
    [41] Walthers C M, Nazemi A K, Patel S L, et al. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle[J]. Biomaterials, 2014, 35(19): 5129-5137. doi: 10.1016/j.biomaterials.2014.03.025
    [42] Huang G J, Yu H P, Wang X L, et al. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization[J]. Journal of Materials Chemistry B, 2021, 9(5): 1277-1287. doi: 10.1039/D0TB02288H
    [43] Somo S I, Akar B, Bayrak E S, et al. Pore interconnectivity influences growth factor-mediated vascularization in sphere-templated hydrogels[J]. Tissue Engineering Part C: Methods, 2015, 21(8): 773-785. doi: 10.1089/ten.tec.2014.0454
    [44] Lian M, Sun B, Han Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration[J]. Biomaterials, 2021, 274(7): 120841. doi: 10.1016/j.biomaterials.2021.120841
    [45] Doyle S E, Pannella M, Onofrillo C, et al. NEST3D printed bone-mimicking scaffolds: Assessment of the effect of geometrical design on stiffness and angiogenic potential[J]. Frontiers in Cell and Developmental Biology, 2024, 12(5): 1353154. doi: 10.3389/fcell.2024.1353154
    [46] Cai Z, Qu C, Song W, et al. Hierarchical chiral calcium silicate hydrate films promote vascularization for tendon-to-bone healing[J]. Advanced Materials, 2024, 36(31): e2404842. doi: 10.1002/adma.202404842
    [47] 廖红兵, 麦昱颖. 骨增量材料中血管新生性能的作用及认识[J]. 中国口腔种植学杂志, 2024, 29(2): 150-158.
  • [1] 李啟堂, 代兴飞, 张清东, 严荣爽, 潘呈, 费德锐, 马裕俭, 徐世鑫, 张颖.  早发性脊柱侧弯合并胸廓发育不良综合征幼猪模型肺组织学及超微结构, 昆明医科大学学报. 2024, 45(5): 23-28. doi: 10.12259/j.issn.2095-610X.S20240504
    [2] 贾政, 邢正江, 刘茜, 杜义斌, 李冰, 解英, 赵义.  建立大鼠心肌缺血与体外CMECs缺氧模型-观察对冠脉微循环的影响, 昆明医科大学学报. 2024, 45(11): 38-45. doi: 10.12259/j.issn.2095-610X.S20241106
    [3] 李志霄, 郑霞, 李春玲, 刘庆圣, 张衡.  miR-205-5p靶向ERBB3调控PI3K/AKT/mTOR通路抑制血管生成在痔疮中的分子机制, 昆明医科大学学报. 2024, 45(6): 22-35. doi: 10.12259/j.issn.2095-610X.S20240604
    [4] 杨镕羽, 宋飞, 黄浩, 段开文, 向盈盈.  骨髓间充质干细胞在口腔医学中的应用, 昆明医科大学学报. 2023, 44(3): 155-159. doi: 10.12259/j.issn.2095-610X.S20230323
    [5] 徐云容, 唐梓闻, 何飞.  骨修复材料促成骨作用的分子机制, 昆明医科大学学报. 2023, 44(10): 168-179. doi: 10.12259/j.issn.2095-610X.S20231007
    [6] 赵剑, 谢九冰, 赵连凯.  雷珠单抗和傲迪适对黄斑区微血管结构的影响, 昆明医科大学学报. 2022, 43(9): 141-146. doi: 10.12259/j.issn.2095-610X.S20220930
    [7] 杨政鸿, 宁明杰, 何大千, 杨猛哲, 黄永平, 黄云超.  不同3D打印精度制作的生物材料表面形貌对表皮葡萄球菌生物膜形成影响, 昆明医科大学学报. 2022, 43(2): 12-17. doi: 10.12259/j.issn.2095-610X.S20220228
    [8] 王家云, 季娟娟, 林云红, 陈建中, 何丽明, 黄敏, 李旭东.  下颌管在下颌骨内解剖结构的锥形束CT测量, 昆明医科大学学报. 2021, 42(1): 115-123. doi: 10.12259/j.issn.2095-610X.S20210104
    [9] 王宏宇, 韦焘, 王进昆, 杨智勇, 王伟民, 丁鹏.  MCP-1、VEGF在人脑胶质瘤中的表达及其相关性, 昆明医科大学学报. 2020, 41(01): 26-30.
    [10] 杨绍艳, 伍路, 张素仙.  miRNAs在子宫内膜异位症发生发展中的作用研究进展, 昆明医科大学学报. 2020, 41(08): 155-161.
    [11] 唐诗聪, 陈东, 郭瑢, 杨德春, 赵英竹, 谢吕, 张潜, 刘德权, 王晓莉, 唐一吟.  miRNA-21调控HER-2阳性乳腺癌的血管生成, 昆明医科大学学报. 2020, 41(08): 39-45.
    [12] 徐林, 胡敏, 李钟辉, 范建楠.  骨髓间充质干细胞复合人工支架材料治疗骨缺损的研究进展, 昆明医科大学学报. 2017, 38(02): 1-5.
    [13] 何丽明, 何永文.  口腔修复膜材料在牙种植中引导骨再生的临床效果, 昆明医科大学学报. 2017, 38(03): 31-34.
    [14] 朱焕利.  VASP信号分子与大肠癌的关系, 昆明医科大学学报. 2016, 37(10): -.
    [15] 杨萍.  体外心脏震波治疗对冠心病患者血管再生相关细胞因子的影响, 昆明医科大学学报. 2014, 35(05): -.
    [16] 税艳青.  牙周病相关研究及组织工程应用的研究进展, 昆明医科大学学报. 2014, 35(11): 1-1.
    [17] 赵玉鑫.  Brdu标记VECs和ADSCs构建组织工程骨体内增殖研究, 昆明医科大学学报. 2014, 35(03): -.
    [18] 戴琳.  单纯心理应激对SD大鼠行为及髁突软骨组织结构影响的实验研究, 昆明医科大学学报. 2013, 34(09): 1-1.
    [19] 杨丽华.  抗整合素αⅤβ3单抗抑制上皮性卵巢癌血管及肿瘤生成的实验研究, 昆明医科大学学报. 2012, 33(06): -.
    [20] 可吸收内固定材料对颌骨骨折稳固作用的19例临床分析, 昆明医科大学学报. 2011, 32(09): -.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-16

目录

    /

    返回文章
    返回