Effect of TLR4/MyD88/NF- κB Signal Pathway on the Hippocampus of Methamphetamine-dependent CPP Rats
-
摘要:
目的 研究TLR4/MyD88/NF-κB信号通路对甲基苯丙胺(methamphetamine,MA)依赖的条件性位置偏好(conditioned place preference,CPP)大鼠海马的影响,同时采用特异性抑制剂TAK-242抑制Toll样4受体(Toll-like receptor 4,TLR4),减轻MA依赖诱导的海马神经炎症。 方法 建立MA(10 mg/kg,ip,14 d)依赖大鼠CPP模型,分别为生理盐水组、MA组、TAK-242组、MA+TAK-242组。TAK-242组和MA+TAK-242组先分别腹腔注射抑制剂TAK-242(3 mg/kg),1h后MA+TAK-242组再腹腔注射MA(10 mg/kg)。采用Western Blot实验和采用荧光定量PCR实验检测MA依赖CPP大鼠海马中TLR4、MyD88、TRAF6、IκB-α、p-IκB-α、NF-κBp65、p-NF-κBp65蛋白的表达和mRNA表达。 结果 与生理盐水组相比,MA组TLR4、MyD88、TRAF6、NF-κBp65的蛋白和mRNA表达均升高(P < 0.001或P < 0.01),IκB-α的蛋白和mRNA表达下降(P < 0.01),p-IκB-α、p-NF-κBp65的表达升高(P < 0.01或P < 0.05);与MA组相比,MA+TAK-242组TLR4、MyD88、TRAF6、NF-κBp65的蛋白和mRNA表达均下降(P < 0.001、P<0.01或P < 0.05),IκB-α的蛋白和mRNA表达升高(P < 0.01),p-IκB-α、p-NF-κBp65表达下降(P < 0.01或P < 0.05)。 结论 MA依赖可通过激活TLR4/MyD88/NF-κB信号通路,诱导CPP大鼠海马神经炎症的发生,采用特异性TLR4抑制剂可以减轻MA诱导的神经炎症。 -
关键词:
- 甲基苯丙胺依赖 /
- 条件性位置偏爱 /
- 海马 /
- TLR4/MyD88/NF-κB信号转导通路
Abstract:Objective To study the effect of TLR4/MyD88/NF- κB signal pathway on the hippocampus of methamphetamine (MA) dependent conditioned place preference (CPP) rats, and inhibition of Toll like receptor 4 (TLR4) by specific inhibitor TAK-242, thereby reducing MA induced hippocampal neuroinflammation. Methods We established a model of MA (10 mg/kg, ip, 14 d) dependent CPP in rats. Rats were randomly divided into 4 groups: normal saline group, MA group, TAK-242 group, and MA+TAK-242 group. TAK-242 group and MA+TAK-242 group were intraperitoneally injected with inhibitor TAK-242 (3 mg/kg), and MA+TAK-242 group was intraperitoneally injected with MA (10 mg/kg) one hour later. Protein and mRNA expression of TLR4, MyD88, TRAF6, IκB- α, p-IκB- α, NF- κ B p65, p-NF-Κb p65 in hippocampus of MA dependent CPP rats were tested by Western Blot test and fluorescent quantitative PCR, respectively. Results Compared with normal saline group, the expression of protein and mRNA of TLR4, MyD88, TRAF6, NF- κBp65 in MA group increased (P < 0.001 or P < 0.01).The protein of IκB- α and mRNA expression of lactamase decreased (P < 0.01), the expression of p-IκB- α and p-NF- κBp65 increased (P < 0.01 or P < 0.05). Compared with MA group, the protein and mRNA expression of TLR4, MyD88, TRAF6, NF- κBp65 in MA+TAK-242 group decreased (P < 0.001, P < 0.01 or P < 0.05) . The expression of IκB- α protein and mRNA was increased (P < 0.01), the expression of p-IκB- α and p-NF- κBp65 decreased (P < 0.01 or P < 0.05). Conclusions MA dependency can be achieved by activating TLR4/MyD88/NF- κ B signal pathway, which can induce neuroinflammation on the hippocampus of methamphetamine-dependent CPP rats. The use of specific TLR4 inhibitors can attenuate MA induced neuroinflammation. -
图 1 大鼠海马中TLR4/MyD88/NF-κB 信号转导通路蛋白表达水平变化。
A:海马中TLR4的表达水平;B:海马中MyD884的表达水平;C:海马中TRAF6的表达水平;D:海马中p-IκB-α的表达水平;E:海马中IκB-α的表达水平;F:海马中p-NF-κBp65的表达水平;G:海马中NF-κBp65的表达水平。与对照组进行比较,*P < 0.05,**P < 0.01;与MA组比较,#P < 0.05,##P < 0.01 。
Figure 1. The protein expression of TLR4/MyD88/NF-κB signal transduction pathway in the hippocampus of rats
图 2 大鼠海马中TLR4/MyD88/NF-κB 信号转导通路的mRNA表达 水平统计结果
A:海马中TLR4的mRNA表达水平;B:海马中MyD884的mRNA表达水平;C:海马中TRAF6的mRNA表达水平;D:海马中IκB-α的mRNA表达水平;E:海马中NF-κBp65的mRNA表达水平。与对照组进行比较,**P < 0.01,***P < 0.001;与MA组进行比较,##P < 0.05 , ###P < 0.001。
Figure 2. The mRNA expression of TLR4/MyD88/NF-κB signal transduction pathway in the hippocampus
表 1 荧光定量PCR引物序列
Table 1. Fluorescence quantitative PCR primer sequence
基因名称 引物序列信息 温度 TLR4 上游引物:5'-TGCCTGAGACCAGGAAGCTTG 3'
下游引物:5'-CTTAAGATCTTCAGGGGGTTG3'54 ℃ Myd88 上游引物:5'-TGAGAAAAGGTGTCGTCGCA3'
下游引物:5'-GGGTCCAGAACCAGGACTTG'54 ℃ TRAF6 上游引物:5'-GCCCATGCCGTATGAAGAGA 3'
下游引物:5'-CGTGACAGCCAAACACACTG3'54 ℃ NF-κB p65 上游引物:5'-GAGACCTGGAGCAAGCCATT3'
下游引物:5'-AGTTCCGGTTTACTCGGCAG3'54 ℃ IKB-α 上游引物:5'-GAATCCTGACCTGGTCTCGC'
下游引物:5'-CACAGTCATCGTAGGGCAACT3'55 ℃ β-actin 上游引物:5'-AGACAGCCGCATCTTGT-3'
下游引物:5'-CTTGCCGTGGGTAGAGTCAT-3'55 ℃ 表 2 大鼠海马中TLR4/MyD88/NF-κB 信号转导通路的mRNA表达(n = 6,
$\bar x \pm s $ )Table 2. The mRNA expression of TLR4/MyD88/NF-κB signal transduction pathway in the hippocampus of rats (n = 6,
$\bar x \pm s $ )因子 组别 生理盐水组 Meth组 TAK-242组 Meth+TAK-242 组 TLR4 0.82 ± 0.10 1.16 ± 0.20 ** 0.80 ± 0.22 0.83 ± 0.11 ## MyD88 0.90 ± 0.08 1.17 ± 0.13 ** 0.83 ± 0.15 0.86 ± 0.08 ## TRAF6 0.98 ± 0.27 1.62 ± 0.47 ** 0.84 ± 0.29 0.92 ± 0.25 ## IκB-α 1.04 ± 0.17 0.69 ± 0.11 ** 0.98 ± 0.14 1.00 ± 0.13 ## NF-κBp65 0.88 ± 0.12 1.14 ± 0.10 *** 0.89 ± 0.06 0.92 ± 0.16 ### 与对照组进行比较,**P < 0.01,***P < 0.001;与MA组进行比较,##P < 0.05 ,###P < 0.001。 -
[1] 石晶晶,吴宁,李锦. 苯丙胺类兴奋剂成瘾的治疗药物研究现状[J]. 中国药物依赖性杂志,2016,25(2):145-150. doi: 10.13936/j.cnki.cjdd1992.2016.02.001 [2] Veschsanit N,Yang J L,Ngampramuan S,et al. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice[J]. Life Sciences,2021,7(3):265-274. [3] Zhang S,Jin Y,Liu X,et al. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons[J]. Brain Research,2014,40(2):1-11. [4] 张莉,布胡丽倩木·伊买尔江,马瑞佳,等. 1-(2-氯)苯基-9-丁基-β-咔啉对小鼠的神经毒性作用[J]. 中国医院药学杂志,2022,42(9):879-883. doi: 10.13286/j.1001-5213.2022.09.01 [5] 魏姗姗. 虫草素对谷氨酸诱导的兴奋性神经毒性的保护作用及机制研究[J]. 江西科技师范大学学报,2020,25(2):1-52. [6] 杨根梦,曾晓锋,张冬先,等. Nupr1/ERS/NLRP3炎性小体在甲基苯丙胺诱导的神经毒性中的作用[J]. 中国药理学通报,2020,36(3):297-300. doi: 10.3969/j.issn.1001-1978.2020.03.001 [7] Shaerzadeh F,Streit W J,Heysieattalab S,et al. Methamphetamine neurotoxicity,microglia,and neuroinflammation[J]. Journal of Neuroinflammation,2018,15(1):341-363. doi: 10.1186/s12974-018-1385-0 [8] Fernández-Arjona M D M,Grondona J M,Fernández-Llebrez P,et al. Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors[J]. Journal of Neuroinflammation,2019,16(1):245-261. doi: 10.1186/s12974-019-1643-9 [9] Azam S,Jakaria M,Kim I S,et al. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling[J]. Frontiers in Immunology,2019,10(1):432-447. [10] Chang J,Wang L,Zhang M,et al. Glabridin attenuates atopic dermatitis progression through downregulating the TLR4/MyD88/NF-κB signaling pathway[J]. Genes & Genomics,2021,43(8):847-855. [11] Jiang H,Yang X,Wang Y,et al. Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation[J]. Biomed Research International,2022,15(7):336-339. [12] Chen H,Zhong J,Li J,et al. PTP70-2,a novel polysaccharide from Polygala tenuifolia,prevents neuroinflammation and protects neurons by suppressing the TLR4-mediated MyD88/NF-κB signaling pathway[J]. International Journal of Biological Macromolecules,2022,194(1):546-555. [13] Li B,Wang M,Chen S,et al. Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia[J]. Biomed Research International,2022,10(1):326-344. [14] Qu H,Liu R,Chen J,et al. Aerobic Exercise Inhibits CUMS-Depressed Mice Hippocampal Inflammatory Response via Activating Hippocampal miR-223/TLR4/MyD88-NF-κB Pathway[J]. International Journal of Environmental Research and Public Health,2020,17(8):2676. doi: 10.3390/ijerph17082676 [15] Cui Y,Wang Y,Zhao D,et al. Loganin prevents BV-2 microglia cells from Aβ(1-42) -induced inflammation via regulating TLR4/TRAF6/NF-κB axis[J]. Cell Biology International,2018,42(12):1632-1642. doi: 10.1002/cbin.11060 [16] Xie X L,Zhou W T,Zhang K K,et al. METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum[J]. Frontiers in Neuroscience,2018,12(2):802-809. [17] Du S H,Qiao D F,Chen C X,et al. Toll-Like Receptor 4 Mediates Methamphetamine-Induced Neuroinflammation through Caspase-11 Signaling Pathway in Astrocytes[J]. Frontiers in Molecular Neuroscience,2017,10(1):409-421. [18] Hu Q P,Mao D A. Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation[J]. BMC Neuroscience,2016,17(1):22-45. doi: 10.1186/s12868-016-0264-9 [19] 贺春香,于文静,杨苗,等. 黄芩苷通过TREM2/TLR4/NF-κB信号通路抑制脂多糖/干扰素γ诱导的BV2细胞炎症反应[J]. 中国中药杂志,2022,47(6):1603-1610. doi: 10.19540/j.cnki.cjcmm.20211103.401 [20] 房尚萍,李海源,丁磊,等. 通过调节NF-κB通路中的IκBα抑制乳腺癌的研究进展[J]. 锦州医科大学学报,2021,42(1):104-128. [21] Liu X,Zhang X,Wang F,et al. Improvement in cerebral ischemia-reperfusion injury through the TLR4/NF-κB pathway after Kudiezi injection in rats[J]. Life Sciences,2017,191(1):132-140. [22] Long H,Ruan J,Zhang M,et al. Rhynchophylline Attenuates Tourette Syndrome via BDNF/NF-κB Pathway In Vivo and In Vitro[J]. Neurotoxicity Research,2019,36(4):756-763. doi: 10.1007/s12640-019-00079-x