Research Progress of Diabetic Tubulopathy
-
摘要: 糖尿病肾病已成为慢性肾脏疾病和终末期肾病的主要原因。更好地了解糖尿病肾病早期变化的特征和分子机制,有助于开发预防该慢性病变的新策略。早期糖尿病肾病损伤机制和治疗靶点的研究已由以肾小球损伤为中心转移到糖尿病肾小管病(diabetic tubulopathy,DT)。就血糖、补体、生物标志物和线粒体在糖尿病肾小管病的作用机制研究和相关治疗靶点进行综述,以期为早期糖尿病肾病的诊断和治疗提供新的方向。Abstract: Diabetic kidney disease(DKD) has become a major cause of chronic kidney disease and end-stage renal disease. A better understanding of the characteristics and molecular mechanisms of the early changes in DKD will contribute to the development of new strategies to prevent this chronic disease. The research on the damage mechanism and therapeutic targets of early DKD has shifted from glomerular damage to diabetic tubulopathy(DT). This article summarizes the mechanism and therapeutic targets of blood glucose, complement, biomarkers and mitochondria in DT, with the purpose to provide a new direction for the diagnosis and treatment of early DKD.
-
Key words:
- Diabetic kidney disease /
- Diabetic tubulopathy /
- Complement /
- Biomarker /
- Mitochondria
-
[1] Fineberg D,Jandeleit-Dahm K A,Cooper M E. Diabetic nephropathy: Diagnosis and treatment[J]. Nat Rev Endocrinol,2013,9(12):713-723. doi: 10.1038/nrendo.2013.184 [2] Huang S,Xu Y,Ge X,et al. Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway[J]. J Cell Physiol,2019,234(7):11200-11207. doi: 10.1002/jcp.27770 [3] Alicic R Z,Rooney M T,Tuttle K R. Diabetic kidney disease: Challenges,progress,and possibilities[J]. Clin J Am Soc Nephrol,2017,12(12):2032-2045. doi: 10.2215/CJN.11491116 [4] Yamanouchi M,Furuichi K,Hoshino J,et al. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: A propensity score-matched analysis of a nationwide,biopsy-based cohort study[J]. Diabetes Care,2019,42(5):891-902. doi: 10.2337/dc18-1320 [5] Pichaiwong W,Homsuwan W,Leelahavanichkul A. The prevalence of normoalbuminuria and renal impairment in type 2 diabetes mellitus[J]. Clin Nephrol,2019,92(2):73-80. doi: 10.5414/CN109606 [6] Lamacchia O,Viazzi F,Fioretto P,et al. Normoalbuminuric kidney impairment in patients with T1DM: Insights from annals initiative[J]. Diabetol Metab Syndr,2018,10(60):1-8. [7] Chen J,Wang X,He Q,et al. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis[J]. Diabetes,2020,69(11):2446-2457. doi: 10.2337/db20-0579 [8] Zeni L,Norden A G W,Cancarini G,et al. A more tubulocentric view of diabetic kidney disease[J]. J Nephrol,2017,30(6):701-717. doi: 10.1007/s40620-017-0423-9 [9] Haraguchi R,Kohara Y,Matsubayashi K,et al. New insights into the pathogenesis of diabetic nephropathy: Proximal renal tubules are primary target of oxidative stress in diabetic kidney[J]. Acta Histochem Cytochem,2020,53(2):21-31. doi: 10.1267/ahc.20008 [10] Phillips A O,Steadman R,Morrisey K,et al. Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation[J]. Kidney Int,1997,52(4):973-984. doi: 10.1038/ki.1997.419 [11] Morrisey K,Steadman R,Williams J D,et al. Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent[J]. Kidney Int,1999,55(6):2548-2572. [12] Perkovic V,Jardine M J,Neal B,et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med,2019,380(24):2295-2306. doi: 10.1056/NEJMoa1811744 [13] Neuen B L,Young T,Heerspink H J L,et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis[J]. Lancet Diabetes Endocrinol,2019,7(11):845-854. doi: 10.1016/S2213-8587(19)30256-6 [14] Cherney D Z I,Zinman B,Inzucchi S E,et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised,placebo-controlled trial[J]. Lancet Diabetes Endocrinol,2017,5(8):610-621. doi: 10.1016/S2213-8587(17)30182-1 [15] Yu S M,Leventhal J S,Cravedi P. Totally tubular,dude: Rethinking DKD pathogenesis in the wake of SGLT2i data[J]. J Nephrol,2021,34(3):629-631. doi: 10.1007/s40620-020-00868-0 [16] Lans H,Hoeijmakers J H. Genome stability,progressive kidney failure and aging[J]. Nat Genet,2012,44(8):836-838. doi: 10.1038/ng.2363 [17] Daroux M,Prevost G,Maillard-Lefebvre H,et al. Advanced glycation end-products: Implications for diabetic and non-diabetic nephropathies[J]. Diabetes Metab,2010,36(1):1-10. doi: 10.1016/j.diabet.2009.06.005 [18] Kumar Pasupulati A,Chitra P S,Reddy G B. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy[J]. Biomol Concepts,2016,7(5-6):293-309. doi: 10.1515/bmc-2016-0021 [19] Khalid M,Petroianu G,Adem A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives[J]. Biomolecules,2022,12(4):1-17. [20] Sharma R,Sharma M,Reddy S,et al. Chronically increased intrarenal angiotensin II causes nephropathy in an animal model of type 2 diabetes[J]. Front Biosci,2006,1(11):968-976. [21] Zhu Y,Cui H,Lv J,et al. Angiotensin II triggers RIPK3-MLKL-mediated necroptosis by activating the Fas/FasL signaling pathway in renal tubular cells[J]. PloS one,2020,15(3):1-19. [22] Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(5):R1009-R1022. doi: 10.1152/ajpregu.00809.2010 [23] Thomas M C,Burns W C,Cooper M E. Tubular changes in early diabetic nephropathy[J]. Adv Chronic Kidney Dis,2005,12(2):177-186. doi: 10.1053/j.ackd.2005.01.008 [24] Hashimoto Y,Yamagishi S,Mizukami H,et al. Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase[J]. J Diabetes Investig,2011,2(2):111-122. doi: 10.1111/j.2040-1124.2010.00071.x [25] Najafian B, Crosson J T, Kim Y, et al. Glomerulotubular junction abnormalities are associated with proteinuria in type 1 diabetes[J]. J Am Soc Nephrol, 2006, 17 (4 Suppl 2): S53-S60. [26] White K E,Marshall S M,Bilous R W. Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy[J]. Nephrol Dial Transplant,2008,23(11):3539-3545. doi: 10.1093/ndt/gfn351 [27] Vallon V,Thomson S C. Renal function in diabetic disease models: The tubular system in the pathophysiology of the diabetic kidney[J]. Annu Rev Physiol,2012,74(11):351-375. [28] Tang S C W,Leung J C K,Lai K N. Diabetic tubulopathy: An emerging entity[J]. Contrib Nephrol,2011,170(6):124-134. [29] Tang S C W,Yiu W H. Innate immunity in diabetic kidney disease[J]. Nat Rev Nephrol,2020,16(4):206-222. doi: 10.1038/s41581-019-0234-4 [30] Flyvbjerg A. The role of the complement system in diabetic nephropathy[J]. Nat Rev Nephrol,2017,13(5):311-318. doi: 10.1038/nrneph.2017.31 [31] Zhou W,Marsh J E,Sacks S H. Intrarenal synthesis of complement[J]. Kidney Int,2001,59(4):1227-1235. doi: 10.1046/j.1523-1755.2001.0590041227.x [32] Wada T,Nangaku M. Novel roles of complement in renal diseases and their therapeutic consequences[J]. Kidney Int,2013,84(3):441-450. doi: 10.1038/ki.2013.134 [33] Afshar-Kharghan V. The role of the complement system in cancer[J]. J Clin Invest,2017,127(3):780-789. doi: 10.1172/JCI90962 [34] Braun M C,Reins R Y,Li T B,et al. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells[J]. J Immunol,2004,173(6):4190-4196. doi: 10.4049/jimmunol.173.6.4190 [35] de Vries B,Kohl J,Leclercq W K,et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils[J]. J Immunol,2003,170(7):3883-3889. doi: 10.4049/jimmunol.170.7.3883 [36] Liu F,Gou R,Huang J,et al. Effect of anaphylatoxin C3a,C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro[J]. Chin Med J (Engl),2011,124(23):4039-4045. [37] Woroniecka K I,Park A S,Mohtat D,et al. Transcriptome analysis of human diabetic kidney disease[J]. Diabetes,2011,60(9):2354-2369. doi: 10.2337/db10-1181 [38] Zheng J M,Jiang Z H,Chen D J,et al. Pathological significance of urinary complement activation in diabetic nephropathy: A full view from the development of the disease[J]. J Diabetes Investig,2019,10(3):738-744. doi: 10.1111/jdi.12934 [39] Hansen T K. Mannose-binding lectin (MBL) and vascular complications in diabetes[J]. Horm Metab Res,2005,37(Suppl 1):95-98. [40] Li X Q,Chang D Y,Chen M,et al. Complement activation in patients with diabetic nephropathy[J]. Diabetes Metab,2019,45(3):248-253. doi: 10.1016/j.diabet.2018.04.001 [41] Cai K,Ma Y,Wang J,et al. Mannose-binding lectin activation is associated with the progression of diabetic nephropathy in type 2 diabetes mellitus patients[J]. Ann Transl Med,2020,8(21):1-11. [42] Huang Y,Xu J,Wu X,et al. High expression of complement components in the kidneys of type 2 diabetic rats with diabetic nephropathy[J]. Front Endocrinol (Lausanne),2019,10(7):1-9. [43] Mise K,Hoshino J,Ueno T,et al. Prognostic value of tubulointerstitial lesions,urinary N-Acetyl-beta-d-glucosaminidase,and urinary beta2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy[J]. Clin J Am Soc Nephrol,2016,11(4):593-601. doi: 10.2215/CJN.04980515 [44] Han W K,Bailly V,Abichandani R,et al. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury[J]. Kidney Int,2002,62(1):237-244. doi: 10.1046/j.1523-1755.2002.00433.x [45] Adachi T,Arito M,Suematsu N,et al. Roles of layilin in TNF-alpha-induced epithelial-mesenchymal transformation of renal tubular epithelial cells[J]. Biochem Biophys Res Commun,2015,467(1):63-69. doi: 10.1016/j.bbrc.2015.09.121 [46] Limonte C P,Valo E,Drel V,et al. Urinary proteomics identifies cathepsin D as a biomarker of rapid eGFR decline in type 1 diabetes[J]. Diabetes Care,2022,45(6):1416-1427. doi: 10.2337/dc21-2204 [47] Martin-Granado A,Vazquez-Moncholi C,Luis-Yanes M I,et al. Determination of clara cell protein urinary elimination as a marker of tubular dysfunction[J]. Pediatr Nephrol,2009,24(4):747-752. doi: 10.1007/s00467-008-1078-5 [48] Hibi Y,Uemura O,Nagai T,et al. The ratios of urinary beta2-microglobulin and NAG to creatinine vary with age in children[J]. Pediatr Int,2015,57(1):79-84. doi: 10.1111/ped.12470 [49] Nielsen S E,Sugaya T,Tarnow L,et al. Tubular and glomerular injury in diabetes and the impact of ACE inhibition[J]. Diabetes Care,2009,32(9):1684-1688. doi: 10.2337/dc09-0429 [50] Nielsen S E,Sugaya T,Hovind P,et al. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients[J]. Diabetes Care,2010,33(6):1320-1324. doi: 10.2337/dc09-2242 [51] Araki S,Haneda M,Koya D,et al. Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy[J]. Diabetes Care,2013,36(5):1248-1253. doi: 10.2337/dc12-1298 [52] Hong C Y,Chia K S. Markers of diabetic nephropathy[J]. J Diabetes Complications,1998,12(1):43-60. doi: 10.1016/S1056-8727(97)00045-7 [53] Lee M,Hong N,Lee Y H,et al. Elevated N-acetyl-beta-d-glucosaminidase,a urinary tubular damage marker,is a significant predictor of carotid artery atherosclerosis in type 1 diabetes,independent of albuminuria: A cross-sectional study[J]. J Diabetes Complications,2018,32(8):777-783. doi: 10.1016/j.jdiacomp.2018.05.019 [54] Kim S R,Lee Y H,Lee S G,et al. The renal tubular damage marker urinary N-acetyl-beta-D-glucosaminidase may be more closely associated with early detection of atherosclerosis than the glomerular damage marker albuminuria in patients with type 2 diabetes[J]. Cardiovasc Diabetol,2017,16(1):1-11. doi: 10.1186/s12933-016-0482-6 [55] Bouvet B R,Paparella C V,Arriaga S M,et al. Evaluation of urinary N-acetyl-beta-D-glucosaminidase as a marker of early renal damage in patients with type 2 diabetes mellitus[J]. Arq Bras Endocrinol Metabol,2014,58(8):798-801. doi: 10.1590/0004-2730000003010 [56] Yang W,Luo Y,Yang S,et al. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease[J]. Clin Sci (Lond),2018,132(22):2407-2422. doi: 10.1042/CS20180702 [57] Gala-Bladzinska A,Dumnicka P,Kusnierz-Cabala B,et al. Urinary neutrophil gelatinase-associated lipocalin is complementary to albuminuria in diagnosis of early-stage diabetic kidney disease in type 2 diabetes[J]. Biomed Res Int,2017,2017(8):1-8. [58] Fu W J,Xiong S L,Fang Y G,et al. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: A cross-sectional study[J]. Endocrine,2012,41(1):82-88. doi: 10.1007/s12020-011-9509-7 [59] Duan S,Chen J,Wu L,et al. Assessment of urinary NGAL for differential diagnosis and progression of diabetic kidney disease[J]. J Diabetes Complications,2020,34(10):1-8. [60] Tan A L,Sourris K C,Harcourt B E,et al. Disparate effects on renal and oxidative parameters following RAGE deletion,AGE accumulation inhibition,or dietary AGE control in experimental diabetic nephropathy[J]. American Journal of Physiology. Renal Physiology,2010,298(3):F763-F770. doi: 10.1152/ajprenal.00591.2009 [61] Zhao L,Gao H,Lian F,et al. (1)H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin[J]. American Journal of Physiology. Renal Physiology,2011,300(4):F947-F956. doi: 10.1152/ajprenal.00551.2010 [62] Blantz R C. Phenotypic characteristics of diabetic kidney involvement[J]. Kidney Int,2014,86(1):7-9. doi: 10.1038/ki.2013.552 [63] Coughlan M T,Nguyen T V,Penfold S A,et al. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes[J]. Clin Sci (Lond),2016,130(9):711-720. doi: 10.1042/CS20150838 [64] Jiang H,Shao X,Jia S,et al. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease[J]. Cell Physiol Biochem,2019,52(2):156-171. doi: 10.33594/000000011 [65] Kitada M,Kume S,Imaizumi N,et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway[J]. Diabetes,2011,60(2):634-643. doi: 10.2337/db10-0386 [66] Jha J C,Banal C,Chow B S,et al. Diabetes and kidney disease: Role of oxidative stress[J]. Antioxid Redox Signal,2016,25(12):657-684. doi: 10.1089/ars.2016.6664 [67] Nishikawa T,Edelstein D,Du X L,et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404(6779):787-790. doi: 10.1038/35008121 [68] Ogura Y,Kitada M,Xu J,et al. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD(+)/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats[J]. Aging (Albany NY),2020,12(12):11325-11336. doi: 10.18632/aging.103410 [69] Jeong H Y,Kang J M,Jun H H,et al. Chloroquine and amodiaquine enhance AMPK phosphorylation and improve mitochondrial fragmentation in diabetic tubulopathy[J]. Sci Rep,2018,8(1):1-13. [70] Zheng X,Narayanan S,Xu C,et al. Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes[J]. Elife,2022,11(2):1-22. [71] Liu X,Xu C,Xu L,et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway[J]. Metabolism,2020,111(10):1-10.
点击查看大图
计量
- 文章访问数: 1534
- HTML全文浏览量: 702
- PDF下载量: 43
- 被引次数: 0