Construction of Stable Transfected Cell Line A549 of Non-small Cell Lung Cancer by Overexpressing and Knocking Down LncRNA RP11-521C20.3
-
摘要:
目的 构建过表达及敲减LncRNA RP11-521C20.3的非小细胞肺癌A549稳转细胞株。 方法 根据lncRNA RP11-521C20.3基因序列,设计合成引物并进行扩增。将目的基因与Sbf I和EcoRI酶切的载体连接,构建pcSLenti-pA-RP11-521C20.3-CMV-SFH-EGFP-P2A-Puro-WPRE重组质粒,转染293T细胞,包装含lncRNA RP11-521C20.3质粒重组体的慢病毒。构建shRNA(RP11-521C20.3),连接到AgeI和EcoRI双酶切后的pSLenti-U6-shRNA-CMV-EGFP-F2A-Puro-WPRE载体上,经鉴定后转染293T细胞。再利用慢病毒介导,构建重组质粒pcSLenti-pA-RP11-521C20.3-CMV-SFH-EGFP-P2A-Puro-WPRE和pSLenti-U6-shRNA(RP11-521C20.3)-CMV-EGFP-F2A-Puro-WPRE,导入A549细胞。最后采用RT-qPCR技术在基因水平检测lncRNA RP11-521C20.3的表达。 结果 OV-lncRNA RP11-521C20.3组(过表达组)的lncRNA RP11-521C20.3 mRNA表达量高于NC-lncRNA RP11-521C20.3组(过表达对照组)(P < 0.001),差异倍数为(20.43±0.69)。sh-lncRNA RP11-521C20.3组(敲减组)的lncRNA RP11-521C20.3mRNA表达量低于sh-NC组(敲减对照组)(P < 0.001),差异倍数为(0.21±0.08)。 结论 成功构建了lncRNA RP11-521C20.3过表达及敲减稳转细胞株。为后续研究lncRNA RP11-521C20.3在慢性阻塞性肺疾病(COPD)发病机制中的作用奠定重要基础。 -
关键词:
- lncRNA RP11-521C20.3 /
- 非小细胞肺癌 /
- A549 /
- 慢病毒载体
Abstract:Objective To construct stable transfected cell lines of non-small cell lung cancer A549 with overexpression and knockdown LncRNA RP11-521C20.3. Methods According to lncRNA RP11-521C20.3 gene sequence, primers were designed and amplified. The target gene was then connected to a vector that had been cleaved with Sbf I and EcoRI enzymes to construct the recombinant plasmid pcSLenti-pA-RP11-521C20.3-CMV-SFH-EGFP-P2A-Puro-WPRE. This plasmid was transfected into 293T cells to package the Lentivirus containing the lncRNA RP11-521C20.3 plasmid. An shRNA (RP11-521C20.3) was constructed and connected to the pSLenti-U6-shRNA-CMV-EGFP-F2A-Puro-WPRE vector after being modified with AgeI and EcoRI enzymes. This vector was then transfected into 293T cells after verification. Recombinant plasmids pcSLenti-pA-RP11-521C20.3-CMV-SFH-EGFP-P2A-Puro-WPRE and pSLenti-U6-shRNA (RP11-521C20.3)-CMV-EGFP-F2A-Puro-WPRE were then constructed using the lentivirus-mediated method and introduced into A549 cells. Finally, RT-qPCR technology was used to detect the expression of lncRNA RP11-521C20.3 at the gene level. Results The expression level of lncRNA RP11-521C20.3 mRNA in the OV-lncRNA RP11-521C20.3 group (overexpression group) was higher than that in the NC-lncRNA RP11-521C20.3 group (overexpression control group) (P < 0.001), with a fold change of (20.43±0.69). The expression level of lncRNA RP11-521C20.3 mRNA in the sh-lncRNA RP11-521C20.3 group (knockdown group) was lower than that in the sh-NC group (knockdown control group) (P < 0.001), with a fold change of (0.21±0.08). Conclusion In this study, a stable cell line with overexpression and knockdown of lncRNA RP11-521C20.3 was successfully constructed, which laid an important foundation for the subsequent study of the role of lncRNA RP11-521C20.3 in the pathogenesis of chronic obstructive pulmonary disease (COPD). -
Key words:
- lncRNA RP11-521C20.3 /
- Non-small cell lung cancer /
- A549 /
- Lentiviral vector
-
表 1 LncRNA RP11-521C20.3 PCR扩增引物序列步骤
Table 1. LncRNA RP11-521C20.3 PCR amplification primer sequence
步骤 引物与试剂 扩增引物Forward 5′-CCCTGCTTTGGGGTTGTGA-3′ Reverse 5′-GGAGGCTTTGTGGCTTGCT-3′ PCR扩增体系 5×PrimeSTAR®Buffer 10 µL,dNTP Mixtur 4 µL,正、反向引物各1 µL,模板
DNA < 200 ng,PrimeSTAR® HS DNA Polymerase 0.5 µL,灭菌蒸馏水加至50 µL反应条件 98℃ 10sec,55℃ 5sec,72℃ 1 min/kb,30个循环 扩增产物凝胶电泳 1.5%琼脂糖凝胶电泳 胶回收 TaKaRaMiniBEST Agarose Gel DNA Extraction Kit Ver.3.0 表 2 过表达重组载体构建酶切反应体系
Table 2. Enzyme digestion reaction system for construction of overexpressed recombinant vectors
试剂 体积 质粒 2 μg 10 x反应Buffer 5 µL SbfI 1 µL EcoRI 1 µL ddH2O Up to 50 µL 表 3 过表达重组质粒反应体系
Table 3. Overexpressed recombinant plasmid reaction system
试剂 体积 5x反应Buffer 4 µL 插入片段 2 µL 线性化体 1 µL 无缝克隆酶 2 µL CCH2O Up to 20 µL 表 4 过表达重组质粒鉴定体系
Table 4. Identification system of overexpressed recombinant plasmid
试剂 体积 Premix Tag 25 µL 模板 1 µL 引物1(20 µM) 1 µL 引物2(20 µM) 1 µL 超纯水 Up to 50 µL 表 5 慢病毒包装试剂
Table 5. Lentivirus packaging reagent
试剂 体积 载体质粒 20 μg pHelper 1. 0载体质粒 15 μg pHelper2. 0载体质粒 10 μg 转染试剂 Up to 1mL 表 6 shRNA序列
Table 6. shRNA sequence
名称 序列(5′-3′) Y16185-F CcggCCAGATCTGTTGACCAACTTTCAAGAGAAGTTGGTCAACAGATCTGGTTTTTTg Y16185-R aattcaaaaaaCCAGATCTGTTGACCAACTTCTCTTGAAAGTTGGTCAACAGATCTGG GL427NC2-F CcggCCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGGTTTTTTg GL427NC2-R aattcaaaaaaCCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGG 表 7 敲减载体构建酶切反应体系
Table 7. Enzyme digestion reaction system for knockdown vector construction
试剂 体积 质粒 2 μg 10x反应Buffer 5 μL AgeI 1 μL EcoRI 1 μL ddH2O Up to 50 μL 表 8 敲减重组体PCR鉴定体系
Table 8. Knock-down recombinant PCR identification system
试剂 体积 Premix Tag 2 μg 模板 1 μL 引物1(20 μM) 1 μL 引物2(20 μM) 1 μL ddH2O Up to 50 μL -
[1] Perret J,Yip S W S,Idrose N S,et al. Undiagnosed and 'overdiagnosed' COPD using postbronchodilator spirometry in primary healthcare settings: A systematic review and meta-analysis[J]. BMJ Open Respir Res,2023,10(1):e001478. doi: 10.1136/bmjresp-2022-001478 [2] Wilusz J E. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability[J]. Biochimbiophys acta,2016,1859(1):128-138. [3] Ard R,Allshire R C,Marquardt S. Emerging properties and functional consequences of noncoding transcription[J]. Genetics,2017,207(2):357-367. [4] Omote N,Sauler M. Non-coding RNAs as regulators of cellular senescence in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease[J]. Front Med (Lausanne),2020,7:603047. doi: 10.3389/fmed.2020.603047 [5] Soares do Amaral N,Cruz E Melo N,de Melo Maia B,et al. Noncoding RNA profiles in tobacco- and alcohol-associated diseases[J]. Genes (Basel),2016,8(1):6. doi: 10.3390/genes8010006 [6] Bamodu O A,Wu S M,Feng P H,et al. lnc-IL7R expression reflects physiological pulmonary function and its aberration is a putative indicator of COPD[J]. Biomedicines,2022,10(4):786. doi: 10.3390/biomedicines10040786 [7] Li C,Liu H,Zhang J,et al. LncRNA BMF-AS1 exerts anti-apoptosis function in COPD by regulating BMF expression[J]. Pakistan Journal of Zoology,2020,52(3):893-900. [8] 李玉珍. BMF促细胞凋亡研究进展[J]. 生物化学与生物物理进展,2017,44(9):751-756. [9] Guan R,Yao H,Li Z,et al. Sodium tanshinone IIA sulfonate attenuates cigarette smoke extract-induced mitochondrial dysfunction,oxidative stress,and apoptosis in alveolar epithelial cells by enhancing SIRT1 pathway[J]. Toxicol Sci,2021,183(2):352-362. doi: 10.1093/toxsci/kfab087 [10] Roscioli E,Hamon R,Lester S E,et al. Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD[J]. Respir Res,2018,19(1):234. doi: 10.1186/s12931-018-0945-2 [11] Lee K Y,Park S Y,Park S,et al. Progranulin protects lung epithelial cells from cigarette smoking-induced apoptosis[J]. Respirology,2017,22(6):1140-1148. doi: 10.1111/resp.13023 [12] Hodge S,Hodge G,Holmes M,et al. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation[J]. Eurrespir J,2005,25(3):447-454. [13] Patel B D,Coxson H O,Pillai S G,et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease[J]. Am J Resp Crit Care,2008,178(5):500-505. doi: 10.1164/rccm.200801-059OC [14] Devadoss D,Long C,Langley R J,et al. Long noncoding transcriptome in chronic obstructive pulmonary disease[J]. Am J Resp Cell Mol,2019,61(6):678-688. doi: 10.1165/rcmb.2019-0184TR [15] Qiao X,Hou G,He Y L,et al. The novel regulatory role of the lncRNA-miRNA-mRNA axis in chronic inflammatory airway diseases[J]. Front Mol Biosci,2022,9:927549. doi: 10.3389/fmolb.2022.927549 [16] Tang W,Shen Z,Guo J,et al. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD[J]. Int J Chron Obstruct Pulmon Dis,2016,11:2951-2964. doi: 10.2147/COPD.S109570 [17] Bi H,Zhou J,Wu D,et al. Microarray analysis of long non-coding RNAs in COPD lung tissue[J]. Inflamm Res,2015,64(2):119-126. doi: 10.1007/s00011-014-0790-9 [18] Ming X,Duan W,Yi W. Long non-coding RNA NEAT1 predicts elevated chronic obstructive pulmonary disease (COPD) susceptibility and acute exacerbation risk,and correlates with higher disease severity,inflammation,and lower miR-193a in COPD patients[J]. Int J Clin Exp Pathol,2019,12(8):2837-2848. [19] Gu C,Li Y,Liu J,et al. LncRNA-mediated SIRT1/FoxO3a and SIRT1/p53 signaling pathways regulate type II alveolar epithelial cell senescence in patients with chronic obstructive pulmonary disease[J]. Mol Med Rep,2017,15(5):3129-3134. doi: 10.3892/mmr.2017.6367 [20] Yang L,Wu D,Chen J,et al. Corrigendum to: A functional CNVR_3425.1 damping lincRNA FENDRR increases lifetime risk of lung cancer and COPD in Chinese[J]. Carcinogenesis,2021,42(12):1506-1507. doi: 10.1093/carcin/bgab105 [21] Liu P,Gao H,Wang Y,et al. LncRNA H19 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-181/PDCD4 Axis[J]. COPD,2023,20(1):119-125. doi: 10.1080/15412555.2023.2165906 [22] Liu P, Zhang H, Zeng H, et al. LncRNA CASC2 is involved in the development of chronic obstructive pulmonary disease via targeting miR-18a-5p/IGF1 axis[J]. Ther Adv Respir Dis, 2021, 15: 17534666211028072. [23] 孟凡荣,陈琛,万海粟,等. 慢病毒载体及其研究进展[J]. 中国肺癌杂志,2014,17(12):870-876. [24] Fischer S,Cassivi S D,Xavier A M,et al. Cell death in human lung transplantation: Apoptosis induction in human lungs during ischemia and after transplantation[J]. Ann Surg,2000,231(3):424-431. doi: 10.1097/00000658-200003000-00016 [25] Morris D G,Huang X,Kaminski N,et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema[J]. Nature,2003,422(6928):169-173. doi: 10.1038/nature01413