留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时差成像技术和人工智能在ART治疗中的应用

黄艳荣 李明颖 高梦莹 相立峰 晏家骢 李永刚

黄艳荣, 李明颖, 高梦莹, 相立峰, 晏家骢, 李永刚. 时差成像技术和人工智能在ART治疗中的应用[J]. 昆明医科大学学报, 2024, 45(7): 160-167. doi: 10.12259/j.issn.2095-610X.S20240724
引用本文: 黄艳荣, 李明颖, 高梦莹, 相立峰, 晏家骢, 李永刚. 时差成像技术和人工智能在ART治疗中的应用[J]. 昆明医科大学学报, 2024, 45(7): 160-167. doi: 10.12259/j.issn.2095-610X.S20240724
Yanrong HUANG, Mingying LI, Mengying GAO, Lifeng XIANG, Jiacong YAN, Yonggang LI. Application of Time-Lapse Imaging Technology and Artificial Intelligence in ART[J]. Journal of Kunming Medical University, 2024, 45(7): 160-167. doi: 10.12259/j.issn.2095-610X.S20240724
Citation: Yanrong HUANG, Mingying LI, Mengying GAO, Lifeng XIANG, Jiacong YAN, Yonggang LI. Application of Time-Lapse Imaging Technology and Artificial Intelligence in ART[J]. Journal of Kunming Medical University, 2024, 45(7): 160-167. doi: 10.12259/j.issn.2095-610X.S20240724

时差成像技术和人工智能在ART治疗中的应用

doi: 10.12259/j.issn.2095-610X.S20240724
基金项目: 国家自然科学基金资助项目(82060282);云南省妇产生殖疾病临床医学中心基金资助项目(2021LCZXXF-SZ03);云南省生殖妇产疾病临床医学中心开放课题(2022LCZXKF-SZ11)
详细信息
    作者简介:

    黄艳荣(1994~),女,新疆博尔塔拉蒙古人,在读硕士研究生,主要从事基于形态动力学参数和蛋白质组学来提高胚胎选择的准确性研究工作

    通讯作者:

    李永刚,E-mail: liyongganghome@hotmail.com

  • 中图分类号: R714.8

Application of Time-Lapse Imaging Technology and Artificial Intelligence in ART

  • 摘要: 准确评估胚胎发育对于辅助生殖技术(ART)成功至关重要。传统方法多基于主观的胚胎形态学评估,缺乏客观性和实时性。时差成像技术(TLT)提供更稳定的培养环境,实现胚胎发育的动态监测,分析和建模不同发育时期的动态学参数,用于预测胚胎的植入潜力。然而,动态学参数通常需要人工标注,引入主观干扰,数据模型分析能力差异较大,与实际情况相差甚远,尤其在染色体整倍性分析方面表现较弱。随着人工智能(AI)的不断发展,TLT与AI的结合提供了减少TLT人工标注时间、提高胚胎植入率和染色体整倍性预测等方面的可能性。旨在探讨TLT结合AI在形态学和动态学参数方面对胚胎植入潜力和染色体整倍性的应用。
  • 表  1  TLT在预测胚胎妊娠结局上的应用

    Table  1.   Application of TLT in predicting embryo pregnancy outcomes

    结论 参考文献
    异常的卵裂模式不利于胚胎的着床 Liu等[1315]、Rubio等[14]
    基于KIDscoreTM D5算法评分的胚胎选择,可以提高治疗的单胚胎种植率 Gazzo等[4]
    CPap、PNbd、 t2和S2可以预测质量较高的胚胎 Macedo等[16]
    GV到MI的持续时间与形成高质量胚胎之间具有相关性。 Yang等[17]
    TLT可以提高临床妊娠率 Guo等[18]
    TLT可以提高种植率 Kovacs等[5]
    TLT可以减少早期妊娠丢失 Rubio 等[19]
    研究发现TLT组的活产率、种植率和临床妊娠率均显著高于常规组 Chera-Aree等[20]
    认为时差成像技术的应用不能改善临床结果。 Kieslinger等[21]
    TLT能够选择移植的胚胎 Iwasawa等[22]
    TLT在选择单胚移植时可以维持妊娠率 Haikin Herzberger等[23]
    TLT虽可改善妊娠结局,但其临床妊娠率仍低于囊胚期的单胚移植,且早期流产率没有
    显著性差异。
    田可可等[24]
    下载: 导出CSV

    表  2  TLT在预测胚胎染色体整倍性中的应用

    Table  2.   Application of TLT in predicting embryo chromosomal ploidy

    结论 参考文献
    染色体整倍性正常和异常胚胎在t5、cc2、cc3和t5-t2等参数上存在显著性差异。 Basile等[8]、Chawla等[9]
    发现tPNf在染色体整倍性正常和异常胚胎之间也存在显著性差异。 Chawla等[9]
    tSC和tB在整倍性和非整倍性胚胎中存在显著性差异。 Campbell等[10]
    发现囊胚扩张的动态学参数与胚胎的整倍性有相关性。 Huang等[11]
    16个动态学参数与胚胎染色体非整倍体率之间没有相关性,可能与纳入患者的治疗类型和
    患者的基础情况等多种因素有关。
    Rienzi等[29]
    KS5评分系统的评分与胚胎染色体整倍体率成正相关,还提高了单个整倍体囊胚移植的
    种植率。
    Gazzo等[4]
    下载: 导出CSV

    表  3  TLT和AI结合在预测胚胎种植潜能中的应用

    Table  3.   Application of TLT and AI combined in predicting embryo implantation potential

    AI模型 结论 参考文献
    深度学习模型 可以预测胚胎质量。 Jørgen Berntsen等[40]、Lee 等[46]
    可以预测活产率。 Huang 等[30]
    可以预测胚胎的染色体整倍性。 Lee 等[42]
    可以对胚胎进行形态分级和选择。 Leahy等[49]、Thirumalaraju等[50]、Hammer等[51]、Danardono等[52]、Kanakasabapathy等[53]、Ueno等[54]、UenoBormann 等[31]
    利用TLT技术获取的胚胎发育视频,建立模型,其预测整倍体的准确度达到了 0.8205 Elena Paya等[44]
    对大量的胚胎发育图像进行分析,可提高预测胚胎质量的准确性 Khosravi[47]
    注意力分支网络 对胚胎发育进行自动化标注和标准化形态评估,并预测囊胚移植
    活产率。
    Sawada 等[41]
    EPA 能很好的预测胚胎的染色体整倍性。 Huang 等[43]
    LSTM 可预测胚胎质量的准确性。 Liao 等[48]
    遗传学AI模型 预测预测胚胎倍性。 Diakiw等[57]
    RFC模型 预测胚胎倍性。 De等[58]
    没有明确模型 AI结合TLT对普遍认为无利用价值的第7天胚胎进行评估,为反复移植失败患者,提高了胚胎利用率。 Cimadomo 等[34]
    AI定量描述囊胚扩张成度,从而预测囊胚的植入率。 Lagalla等[37]
    Huang等[38]
    数字化囊胚形态学的评分预测胚胎非整倍性。 Chen 等[39]
    基于多中心临床数据的训练算法的预测能力更佳,可以显著提高治疗临床结局的预测能力。 Duval 等[55]
    在1项基于KID评分进行建模的多中心研究中,发现该数据模型在预测胚胎的种植潜能、囊胚发育潜能和囊胚质量方面有较好的
    预测价值。
    Petersen等[56]
    结合形态动态学特征、囊胚的形态学特征和患者的临床参数建立的模型,在预测整倍体方面表现出很好的效果。 Yuan等[32]
    下载: 导出CSV
  • [1] Fujiwara M,Takahashi K,Izuno M,et al. Effect of micro-environment maintenance on embryo culture after in-vitro fertilization: comparison of top-load mini incubator and conventional front-load incubator[J]. J Assist Reprod Genet,2007,24(1):5-9. doi: 10.1007/s10815-006-9088-3
    [2] 陈志坚,汪彩珠. 时差成像技术用于胚胎选择的研究进展[J]. 国际生殖健康/计划生育杂志,2022,41(02):139-142.
    [3] 中国医师协会生殖医学专业委员会. 人类卵裂期胚胎及囊胚形态学评价中国专家共识[J]. 中华生殖与避孕杂志,2022(12):1218-1225.
    [4] Gazzo E,Peña F,Valdéz F,et al. The Kidscore(TM) D5 algorithm as an additional tool to morphological assessment and PGT-A in embryo selection: a time-lapse study[J]. JBRA Assist Reprod,2020,24(1):55-60.
    [5] Kovacs P,Matyas S,Forgacs V,et al. Non-invasive embryo evaluation and selection using time-lapse monitoring: Results of a randomized controlled study[J]. Eur J Obstet Gynecol Reprod Biol,2019,233:58-63. doi: 10.1016/j.ejogrb.2018.12.011
    [6] Capalbo A,Rienzi L,Cimadomo D,et al. Correlation between standard blastocyst morphology,euploidy and implantation: an observational study in two centers involving 956 screened blastocysts[J]. Hum Reprod,2014,29(6):1173-1181. doi: 10.1093/humrep/deu033
    [7] Macklon N S,Geraedts J P,Fauser B C. Conception to ongoing pregnancy: The 'black box' of early pregnancy loss[J]. Hum Reprod Update,2002,8(4):333-343. doi: 10.1093/humupd/8.4.333
    [8] Basile N,Nogales Mdel C,Bronet F,et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis[J]. Fertil Steril,2014,101(3):699-704. doi: 10.1016/j.fertnstert.2013.12.005
    [9] Chawla M,Fakih M,Shunnar A,et al. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study[J]. J Assist Reprod Genet,2015,32(1):69-75. doi: 10.1007/s10815-014-0372-3
    [10] Campbell A,Fishel S,Bowman N,et al. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics[J]. Reprod Biomed Online,2013,26(5):477-485. doi: 10.1016/j.rbmo.2013.02.006
    [11] Huang T T,Huang D H,Ahn H J,et al. Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection[J]. Reprod Biomed Online,2019,39(1):27-39. doi: 10.1016/j.rbmo.2019.01.010
    [12] Zaninovic N,Irani M,Meseguer M. Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: Is there a relation to implantation and ploidy?[J]. Fertil Steril,2017,108(5):722-729. doi: 10.1016/j.fertnstert.2017.10.002
    [13] Liu Y,Chapple V,Roberts P,et al. Prevalence,consequence,and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system [J]. Fertil Steril,2014,102(5): 1295-1300. e1292.
    [14] Rubio I,Kuhlmann R,Agerholm I,et al. Limited implantation success of direct-cleaved human zygotes: A time-lapse study[J]. Fertil Steril,2012,98(6):1458-1463. doi: 10.1016/j.fertnstert.2012.07.1135
    [15] Liu Y,Qi F,Matson P,et al. Between-laboratory reproducibility of time-lapse embryo selection using qualitative and quantitative parameters: A systematic review and meta-analysis[J]. J Assist Reprod Genet,2020,37(6):1295-1302. doi: 10.1007/s10815-020-01789-4
    [16] Macedo J F,Gomes L M O,Oliveira M R,et al. Morphokinetic parameters as auxiliary criteria for selection of blastocysts cultivated in a time-lapse monitoring system[J]. JBRA Assist Reprod,2020,24(4):411-415.
    [17] Yang Q,Zhu L,Wang M,et al. Analysis of maturation dynamics and developmental competence of in vitro matured oocytes under time-lapse monitoring[J]. Reprod Biol Endocrinol,2021,19(1):183. doi: 10.1186/s12958-021-00868-0
    [18] Guo Y H,Liu Y,Qi L,et al. Can Time-Lapse Incubation and Monitoring Be Beneficial to Assisted Reproduction Technology Outcomes? A Randomized Controlled Trial Using Day 3 Double Embryo Transfer[J]. Front Physiol,2021,12:794601.
    [19] Rubio I,Galán A,Larreategui Z,et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized,controlled trial of the EmbryoScope [J]. Fertil Steril,2014,102(5): 1287-1294. e1285.
    [20] Chera-Aree P,Thanaboonyawat I,Thokha B,et al. Comparison of pregnancy outcomes using a time-lapse monitoring system for embryo incubation versus a conventional incubator in in vitro fertilization: An age-stratification analysis[J]. Clin Exp Reprod Med,2021,48(2):174-183. doi: 10.5653/cerm.2020.04091
    [21] Kieslinger D C,Vergouw C G,Ramos L,et al. Clinical outcomes of uninterrupted embryo culture with or without time-lapse-based embryo selection versus interrupted standard culture (SelecTIMO): A three-armed,multicentre,double-blind,randomised controlled trial[J]. Lancet (London,England),2023,401(10386):1438-1446. doi: 10.1016/S0140-6736(23)00168-X
    [22] Iwasawa T,Takahashi K,Goto M,et al. Human frozen-thawed blastocyst morphokinetics observed using time-lapse cinematography reflects the number of trophectoderm cells[J]. PLoS One,2019,14(1):e0210992. doi: 10.1371/journal.pone.0210992
    [23] Haikin Herzberger E,Ghetler Y,Tamir Yaniv R,et al. Time lapse microscopy is useful for elective single-embryo transfer[J]. Gynecol Endocrinol,2016,32(10):816-818. doi: 10.1080/09513590.2016.1188375
    [24] 田可可,王娟,闫虹,等. 时差成像技术辅助胚胎选择在单胚胎移植中的应用价值[J]. 河南医学研究,2022,31(16):031.
    [25] Bamford T,Barrie A,Montgomery S,et al. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis[J]. Hum Reprod Update,2022,28(5):656-686. doi: 10.1093/humupd/dmac022
    [26] Ho J R,Arrach N,Rhodes-Long K,et al. Blastulation timing is associated with differential mitochondrial content in euploid embryos[J]. J Assist Reprod Genet,2018,35(4):711-720. doi: 10.1007/s10815-018-1113-9
    [27] Boucret L,Tramon L,Saulnier P,et al. Change in the Strategy of Embryo Selection with Time-Lapse System Implementation-Impact on Clinical Pregnancy Rates [J]. J Clin Med,2021,10(18):4111.
    [28] Chavez S L,Loewke K E,Han J,et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage[J]. Nat Commun,2012,3:1251. doi: 10.1038/ncomms2249
    [29] Rienzi L,Capalbo A,Stoppa M,et al. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study[J]. Reprod Biomed Online,2015,30(1):57-66. doi: 10.1016/j.rbmo.2014.09.012
    [30] Huang B,Zheng S,Ma B,et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data[J]. BMC Pregnancy Childbirth,2022,22(1):36. doi: 10.1186/s12884-021-04373-5
    [31] Bormann C L,Kanakasabapathy M K,Thirumalaraju P,et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation [J]. Elife,2020,9:e55301.
    [32] Yuan Z,Yuan M,Song X,et al. Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments[J]. Sci Rep,2023,13(1):2322. doi: 10.1038/s41598-023-29319-z
    [33] Kragh M F,Rimestad J,Lassen J T,et al. Predicting Embryo Viability Based on Self-Supervised Alignment of Time-Lapse Videos[J]. IEEE Trans Med Imaging,2022,41(2):465-475. doi: 10.1109/TMI.2021.3116986
    [34] Cimadomo D,Soscia D,Casciani V,et al. How slow is too slow? A comprehensive portrait of Day 7 blastocysts and their clinical value standardized through artificial intelligence[J]. Hum Reprod,2022,37(6):1134-1147. doi: 10.1093/humrep/deac080
    [35] Shu Y,Watt J,Gebhardt J,et al. The value of fast blastocoele re-expansion in the selection of a viable thawed blastocyst for transfer[J]. Fertil Steril,2009,91(2):401-406. doi: 10.1016/j.fertnstert.2007.11.083
    [36] Zhao J,Yan Y,Huang X,et al. Blastocoele expansion: an important parameter for predicting clinical success pregnancy after frozen-warmed blastocysts transfer[J]. Reprod Biol Endocrinol,2019,17(1):15. doi: 10.1186/s12958-019-0454-2
    [37] Lagalla C,Barberi M,Orlando G,et al. A quantitative approach to blastocyst quality evaluation: Morphometric analysis and related IVF outcomes[J]. J Assist Reprod Genet,2015,32(5):705-712. doi: 10.1007/s10815-015-0469-3
    [38] Huang T T F,Kosasa T,Walker B,et al. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files[J]. Reprod Biomed Online,2021,42(6):1075-1085. doi: 10.1016/j.rbmo.2021.02.015
    [39] Chen C H,Lee C I,Huang C C,et al. Blastocyst morphology based on uniform time-point assessments is correlated with mosaic levels in embryos[J]. Front Genet,2021,12:783826. doi: 10.3389/fgene.2021.783826
    [40] Berntsen J,Rimestad J,Lassen J T,et al. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences[J]. PLoS One,2022,17(2):e0262661. doi: 10.1371/journal.pone.0262661
    [41] Sawada Y,Sato T,Nagaya M,et al. Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth[J]. Reprod Biomed Online,2021,43(5):843-852. doi: 10.1016/j.rbmo.2021.05.002
    [42] Lee C I,Su Y R,Chen C H,et al. End-to-end deep learning for recognition of ploidy status using time-lapse videos[J]. J Assist Reprod Genet,2021,38(7):1655-1663. doi: 10.1007/s10815-021-02228-8
    [43] Huang B,Tan W,Li Z,et al. An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data[J]. Reprod Biol Endocrinol,2021,19(1):185. doi: 10.1186/s12958-021-00864-4
    [44] Paya E,Pulgarín C,Bori L,et al. Deep learning system for classification of ploidy status using time-lapse videos[J]. F S Sci,2023,4(3):211-218.
    [45] Zou Y,Pan Y,Ge N,et al. Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation?[J]. Reprod Biomed Online,2022,45(4):643-651. doi: 10.1016/j.rbmo.2022.06.007
    [46] Lee C I,Huang C C,Lee T H,et al. Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles[J]. Reprod Biol Endocrinol,2024,22(1):12. doi: 10.1186/s12958-024-01185-y
    [47] Khosravi P,Kazemi E,Zhan Q,et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization[J]. NPJ Digit Med,2019,2:21. doi: 10.1038/s41746-019-0096-y
    [48] Liao Q,Zhang Q,Feng X,et al. Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring[J]. Commun Biol,2021,4(1):415. doi: 10.1038/s42003-021-01937-1
    [49] Leahy B D, Jang W D, Yang H Y, et al. Automated measurements of key morphological features of human embryos for IVF[J]. Medical Image Comput Comput Assist Interv,2020,12265:25-35.
    [50] Thirumalaraju P,Kanakasabapathy M K,Bormann C L,et al. Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality[J]. Heliyon,2021,7(2):e06298. doi: 10.1016/j.heliyon.2021.e06298
    [51] Hammer K C,Jiang V S,Kanakasabapathy M K,et al. Using artificial intelligence to avoid human error in identifying embryos: a retrospective cohort study[J]. J Assist Reprod Genet,2022,39(10):2343-2348. doi: 10.1007/s10815-022-02585-y
    [52] Danardono G B,Erwin A,Purnama J,et al. A Homogeneous Ensemble of Robust Pre-defined Neural Network Enables Automated Annotation of Human Embryo Morphokinetics[J]. J Reprod Infertil,2022,23(4):250-256.
    [53] Kanakasabapathy M K,Thirumalaraju P,Bormann C L,et al. Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology[J]. Lab Chip,2019,19(24):4139-4145. doi: 10.1039/C9LC00721K
    [54] Ueno S,Berntsen J,Ito M,et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: A single-center large cohort retrospective study[J]. Fertil Steril,2021,116(4):1172-1180. doi: 10.1016/j.fertnstert.2021.06.001
    [55] Duval A,Nogueira D,Dissler N,et al. A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems[J]. Hum Reprod,2023,38(4):596-608.
    [56] Petersen B M,Boel M,Montag M,et al. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3[J]. Hum Reprod,2016,31(10):2231-2244. doi: 10.1093/humrep/dew188
    [57] Diakiw S M,Hall J M M,VerMilyea M D,et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF[J]. Hum Reprod,2022,37(8):1746-1759. doi: 10.1093/humrep/deac131
    [58] De Gheselle S,Jacques C,Chambost J,et al. Machine learning for prediction of euploidy in human embryos: In search of the best-performing model and predictive features[J]. Fertil Steril,2022,117(4):738-746. doi: 10.1016/j.fertnstert.2021.11.029
  • [1] 和丽梅, 冯雪敏, 李琳珺, 陈莹, 杨泽星.  多囊卵巢综合征不孕人群接受辅助生殖技术治疗后性激素水平的变化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240106
    [2] 张怡雯, 王锡铭, 李子龙, 张新章, 陈昌贤, 刘为军, 张振勇.  人工智能在肛肠疾病诊治中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240201
    [3] 潘呈, 严荣爽, 费德锐, 代兴飞, 李啟堂, 马裕俭, 张颖.  徒手与辅助技术对于下颈椎椎弓根螺钉置入准确性比较的Meta分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230910
    [4] 陈智镖, 黄秋香, 毛丽华, 陈国勇, 刘芸, 王志红.  胚胎植入前遗传学检测在Turner综合征患者中的临床应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231216
    [5] 白云, 钟兰萍, 张婷婷, 吴月蓉, 李蕾.  反复胚胎种植失败人群母体全身因素对子宫内膜种植窗影响分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220701
    [6] 王超群, 牛洁, 蒋苹, 黄蓉霞, 陈建, 孟丽燕.  复合妊娠32例手术治疗的临床观察, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220125
    [7] 赵曼林, 李清, 许伟标, 黄芩, 韦焘.  疤痕子宫患者行体外受精-胚胎移植后选择性单胚移植的临床结局, 昆明医科大学学报.
    [8] 马丽梅, 张庆文, 李坪, 袁云, 郭小兵.  TBL教学模式在组织胚胎学教学的实践, 昆明医科大学学报.
    [9] 张尊月, 李坪, 唐莉, 王昆华, 龙艳喜, 王华伟.  线粒体和胚胎发育关系的研究进展, 昆明医科大学学报.
    [10] 罗熙, 武泽, 李永刚, 董云华, 高梦莹, 邓莲, 相立峰, 李明颖.  EOR在预测辅助生殖结局中的作用, 昆明医科大学学报.
    [11] 相立峰, 王青青, 李明颖, 曾鹏, 李永刚.  印记基因H19在不同质量精子和胚胎中的甲基化状态, 昆明医科大学学报.
    [12] 宋家美, 陈慧, 徐佩琦, 孟昱时.  女性基础睾酮水平对体外受精-胚胎移植妊娠结局的影响, 昆明医科大学学报.
    [13] 赵瑜, 袁婧, 刘建军, 鲁琳.  小鼠胚胎脑源与脊髓源神经干细胞增殖能力的比较, 昆明医科大学学报.
    [14] 李永刚.  乙型肝炎病毒在人类早期胚胎中的垂直传播, 昆明医科大学学报.
    [15] 郭宏亮.  女性下生殖道感染与不孕症的相关性, 昆明医科大学学报.
    [16] 张帆.  CT辅助下人工耳蜗植入患儿面神经隐窝发育研究, 昆明医科大学学报.
    [17] 杨晓玲.  生长激素在体外授精-胚胎移植卵巢低反应患者中的应用, 昆明医科大学学报.
    [18] CT回顾性心电门控调节技术在冠脉成像的临床应用58例分析, 昆明医科大学学报.
    [19] 辅助生殖技术治疗后孕早期自然流产的绒毛细胞染色体分析, 昆明医科大学学报.
    [20] 曹跃龄.  GnRH类似物促进人早期胚胎体外发育能力的实验研究, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  191
  • HTML全文浏览量:  252
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回