留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-21-5p靶向STAT3调节OGD/R诱导的神经元损伤

李妍平 李青芸 霍蓉 董小林 李红梅 魏欢 曾毅

李妍平, 李青芸, 霍蓉, 董小林, 李红梅, 魏欢, 曾毅. miR-21-5p靶向STAT3调节OGD/R诱导的神经元损伤[J]. 昆明医科大学学报, 2025, 46(5): 12-20. doi: 10.12259/j.issn.2095-610X.S20250502
引用本文: 李妍平, 李青芸, 霍蓉, 董小林, 李红梅, 魏欢, 曾毅. miR-21-5p靶向STAT3调节OGD/R诱导的神经元损伤[J]. 昆明医科大学学报, 2025, 46(5): 12-20. doi: 10.12259/j.issn.2095-610X.S20250502
Yanping LI, Qingyun LI, Rong HUO, Xiaolin DONG, Hongmei LI, Huan WEI, Yi ZENG. miR-21-5p Targetes STAT3 Reduce the OGD/R-induced Neuronal Injury[J]. Journal of Kunming Medical University, 2025, 46(5): 12-20. doi: 10.12259/j.issn.2095-610X.S20250502
Citation: Yanping LI, Qingyun LI, Rong HUO, Xiaolin DONG, Hongmei LI, Huan WEI, Yi ZENG. miR-21-5p Targetes STAT3 Reduce the OGD/R-induced Neuronal Injury[J]. Journal of Kunming Medical University, 2025, 46(5): 12-20. doi: 10.12259/j.issn.2095-610X.S20250502

miR-21-5p靶向STAT3调节OGD/R诱导的神经元损伤

doi: 10.12259/j.issn.2095-610X.S20250502
基金项目: 云南省科技厅-昆明医科大学基础研究联合专项基金(202401AY070001-184);云南省教育厅科学研究基金(2023Y0670/2023J0283);昆明市卫生健康委员会卫生科研课题(2023-03-07-006);昆明市卫生科技人才培养项目医学科技学科后备人才培养计划[2023- SW(后备)-47]
详细信息
    作者简介:

    李妍平(1981~),女,山西阳泉人,医学硕士,副主任医师,主要从事神经病学临床、教学及研究工作

    通讯作者:

    曾毅,E-mail:47677031@qq.com

  • 中图分类号: R743.3

miR-21-5p Targetes STAT3 Reduce the OGD/R-induced Neuronal Injury

  • 摘要:   目的  探讨miR-21-5p对OGD/R诱导的HT22细胞损伤的保护作用和潜在机制。  方法  OGD/R诱导HT22细胞构建脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIRI)细胞模型。RT-qPCR检测miR-21-5p的表达。CCK-8法、TUNEL染色和流式细胞术分别检测细胞活力和细胞凋亡情况。ELISA检测细胞上清液中炎症因子IL-6、IL-10、TNF-α的含量。Western blot检测p-STAT3/STAT3、Cleaved-Caspase-3、Bax和Bcl-2蛋白的表达情况。TargetScan数据库预测miR-21-5p和STAT3的结合位点,双荧光素酶报告基因实验验证miR-21-5p与STAT3的靶向关系。  结果  miR-21-5p的表达水平在OGD/R诱导的HT22细胞中表达下调(P < 0.001)。OGD/R诱导后HT22细胞增殖活力下降(P < 0.0001);细胞凋亡率升高(P < 0.001);促炎因子IL-6(P < 0.001)和TNF-α(P < 0.001)的含量升高,抑炎因子IL-10(P < 0.001)含量减少;miR-21-5p mimic转染后提高了细胞活力、减少了凋亡率、抑制了神经炎症。miR-21-5p能够靶向结合STAT3。miR-21-5p inhibitor转染后降低了细胞活力、促进了细胞凋亡和神经炎症的发生,STAT3抑制剂Stattic能够逆转miR-21-5p inhibitor的作用。  结论   miR-21-5p能够靶向结合STAT3,减少OGD/R诱导的HT22细胞的神经炎症和细胞凋亡。
  • 图  1  OGD/R对HT22细胞的影响

    A:CCK-8试剂盒检测细胞活力;B~C:TUNEL染色检测HT22细胞凋亡情况(比例尺50 μm);D:RT-qPCR检测HT22细胞中miR-21-5p的表达情况;与正常对照组相比,***P < 0.001,****P < 0.0001。

    Figure  1.  Effect of OGD/R on HT22 cells

    图  2  miR-21-5p mimic对OGD/R诱导的HT22细胞的影响

    A:RT-qPCR检测miR-21-5p的表达情况;B:CCK-8试剂盒检测细胞活力;C~E:ELISA试剂盒检测炎症因子IL-6、TNF-α、IL-10的含量;F-G:流式细胞术检测细胞凋亡情况;H-K:Western blot检测凋亡相关蛋白Cleaved-Caspase-3、Bax和Bcl-2的表达情况;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001。

    Figure  2.  Effect of miR-21-5p mimic on OGD/R-induced HT22 cells

    图  3  miR-21-5p 靶向调控STAT3

    A:STAT3与miR-21-5p的结合位点示意;B:双荧光素酶报告基因实验检测荧光素酶相对活性;C:RT-qPCR检测miR-21-5p的表达情况;D~E:Western blot检测p-STAT3和STAT3的表达情况;nsP > 0.05;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001。

    Figure  3.  miR-21-5p targets STAT3

    图  4  抑制STAT3逆转了miR-21-5p inhibitor的作用

    A:RT-qPCR检测miR-21-5p的表达情况;B:RT-qPCR检测STAT3的表达情况;C~D:Western blot检测STAT3的表达情况;E-G. ELISA试剂盒检测炎症因子IL-6、TNF-α、IL-10的表达;J~M. Western blot检测凋亡相关蛋白的表达情况;*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001。

    Figure  4.  miR-21-5p targets STAT3

    表  1  基因名称及引物序列

    Table  1.   Gene name and primer sequence

    基因 引物序列 (F:正向引物;R:反向引物) (5'-3'
    miR-21-5p F:TCGCTCGAGATTTTTTTTTATCAAGAGGG
    R:TCGGCGGCCGCGACAAGAATGAGACTTTAATC
    U6 F:GCTTCGGCAGCACATATAAAAT
    R:CGCTTCACGAATTTGCGTGTCAT
    下载: 导出CSV
  • [1] Feske S K. Ischemic Stroke[J]. The American Journal of Medicine,2021,134(12):1457-1464. doi: 10.1016/j.amjmed.2021.07.027
    [2] Jiang L,Hu X. Positive Effect of α-Asaronol on the Incidence of Post-Stroke Epilepsy for Rat with Cerebral Ischemia-Reperfusion Injury[J]. Molecules,2022,27(6):1984-1993. doi: 10.3390/molecules27061984
    [3] Wang W,Liu X,Yang Z,et al. Levodopa improves cognitive function and the deficits of structural synaptic plasticity in hippocampus induced by global cerebral ischemia/reperfusion injury in rats[J]. Frontiers in Neuroscience,2020,14(1):586321. doi: 10.3389/fnins.2020.586321
    [4] Mok V C T,Lam B Y K,Wang Z,et al. Delayed-onset dementia after stroke or transient ischemic attack[J]. Alzheimer's & Dementia,2016,12(11):1167-1176.
    [5] Di Y,Lei Y,Yu F,et al. MicroRNAs Expression and function in cerebral ischemia reperfusion injury[J]. Journal of Molecular Neuroscience,2014,53(2):242-250. doi: 10.1007/s12031-014-0293-8
    [6] Neag M A,Mitre A O,Burlacu C C,et al. miRNA involvement in cerebral ischemia-reperfusion injury[J]. Frontiers in Neuroscience,2022,16(1):901360. doi: 10.3389/fnins.2022.901360
    [7] Jin F,Jin L,Wei B,et al. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1[J]. Experimental Neurology,2024,374(1):114676. doi: 10.1016/j.expneurol.2024.114676
    [8] Zhou F,Wang Y K,Zhang C G,et al. miR-19a/b-3p promotes inflammation during cerebral ischemia/reperfusion injury via SIRT1/FoxO3/SPHK1 pathway[J]. Journal of Neuroinflammation,2021,18(1):122-134. doi: 10.1186/s12974-021-02172-5
    [9] Liu X,Xin W,Lijuan Z,et al. By targeting apoptosis facilitator BCL2L13,microRNA miR-484 alleviates cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice[J]. Bioengineered,2021,12(1):948-959. doi: 10.1080/21655979.2021.1898134
    [10] Zhou H,Zhou J,Teng H,et al. MiR-145 enriched exosomes derived from bone marrow-derived mesenchymal stem cells protects against cerebral ischemia-reperfusion injury through downregulation of FOXO1[J]. Biochemical and Biophysical Research Communications,2022,632(1):92-99. doi: 10.1016/j.bbrc.2022.09.089
    [11] O'Connell R M,Rao D S,Chaudhuri A A,et al. Physiological and pathological roles for microRNAs in the immune system[J]. Nature Reviews Immunology,2010,10(2):111-122. doi: 10.1038/nri2708
    [12] Ghorbanmehr N,Gharbi S,Korsching E,et al. miR-21-5p,miR-141-3p,and miR-205-5p levels in urine—promising biomarkers for the identification of prostate and bladder cancer[J]. The Prostate,2019,79(1):88-95. doi: 10.1002/pros.23714
    [13] Zhan L,Mu Z,Jiang H,et al. MiR-21-5p protects against ischemic stroke by targeting IL-6R[J]. Ann Transl Med,2023,11(2):101-116. doi: 10.21037/atm-22-6451
    [14] L L,X W,Z Y. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies[J]. Biochem Pharmacol (Los Angel),2016,5(4):213-228.
    [15] Pluta R,Januszewski S,Czuczwar S J. Neuroinflammation in post-ischemic neurodegeneration of the brain: Friend,foe,or both?[J]. International Journal of Molecular Sciences,2021,22(9):4405. doi: 10.3390/ijms22094405
    [16] Zhang W,Shu L. Upregulation of miR-21 by ghrelin ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting inflammation and cell apoptosis[J]. DNA Cell Biol,2016,35(8):417-425. doi: 10.1089/dna.2016.3231
    [17] Zhao Y,Lv R,He Y,et al. The miR-21-5p/DUSP8/MAPK signaling pathway mediates inflammation and apoptosis in vascular endothelial cells induced by intermittent hypoxia and contributes to the protective effects of N-acetylcysteine[J]. European Journal of Pharmacology,2025,997(1):177462. doi: 10.1016/j.ejphar.2025.177462
    [18] Ge X,Han Z,Chen F,et al. miR-21 alleviates secondary blood–brain barrier damage after traumatic brain injury in rats[J]. Brain Research,2015,1603(1):150-157. doi: 10.1016/j.brainres.2015.01.009
    [19] Ge X T,Lei P,Wang H C,et al. miR-21 improves the neurological outcome after traumatic brain injury in rats[J]. Scientific Reports,2014,4(1):6718. doi: 10.1038/srep06718
    [20] Pang Q,Zhao Y,Chen X,et al. Apigenin protects the brain against ischemia/reperfusion injury via caveolin-1/VEGF in vitro and in vivo[J]. Oxidative Medicine and Cellular Longevity,2018,2018(1):7017204. doi: 10.1155/2018/7017204
    [21] Wu L,Jiang C,Kang Y,et al. Curcumin exerts protective effects against hypoxia‑reoxygenation injury via the enhancement of apurinic/apyrimidinic endonuclease 1 in SH‑SY5Y cells: Involvement of the PI3K/AKT pathway[J]. Int J Mol Med,2020,45(4):993-1004.
    [22] Wang G Y,Wang T Z,Zhang Y Y,et al. NMMHC IIA inhibition ameliorates cerebral ischemic/reperfusion-induced neuronal apoptosis through caspase-3/ROCK1/MLC pathway[J]. Drug Design,Development and Therapy,2020,14(1):13-25.
    [23] Mokhtari Sangdehi S R,Akbar H M,and Ranjbar M. Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury[J]. International Journal of Neuroscience,2022,132(11):1102-1109. doi: 10.1080/00207454.2020.1860971
    [24] Xu F,Ma R,Zhang G,et al. Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus[J]. Biomedicine & Pharmacotherapy,2018,108(1):1596-1606.
    [25] Teertam S K,Jha S,Prakash babu P. Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain[J]. Journal of Clinical Neuroscience,2020,72:402-411. doi: 10.1016/j.jocn.2019.11.043
    [26] Shanmugam M K,Lee J H,Chai E Z P,et al. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds[J]. Seminars in Cancer Biology,2016,40-41(1):35-47. doi: 10.1016/j.semcancer.2016.03.005
    [27] Zhong Z,Wen Z,Darnell J E. Stat3: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6[J]. Science,1994,264(5155):95-98. doi: 10.1126/science.8140422
    [28] You L,Zhanggui W,Hongsen L,et al. The role of STAT3 in autophagy[J]. Autophagy,2015,11(5):729-739. doi: 10.1080/15548627.2015.1017192
  • [1] 梁国晶, 冀琨, 张恺纯, 张玉芳, 安晶, 张钰鸽, 文娟, 任海燕.  益生菌对脑缺血再灌注损伤大鼠Aβ表达的影响及神经元的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240506
    [2] 李妍平, 董小林, 李青芸, 李红梅, 魏欢, 曾毅.  miR-21-5p通过抑制STAT3缓解OGD诱导的HT22细胞炎症和凋亡并促进增殖, 昆明医科大学学报.
    [3] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230419
    [4] 刘巍敏, 麻艺群, 田卓, 湯諹.  PI3K/Akt信号通路在增生性瘢痕中的调控作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230313
    [5] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231206
    [6] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [7] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [8] 李媛媛, 李娟, 杨根梦, 黄俭, 刘柳, 沈宝玉, 王婵, 许悦, 林纾丞, 曾晓锋.  甲基苯丙胺神经毒性作用及机制的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210210
    [9] 罗靖, 高娴玲, 邵建林, 张超, 张琦.  胆绿素改善大鼠脑缺血再灌注损伤的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201107
    [10] 王增涛, 张洁, 郭涛.  七氟烷预处理对大鼠脑缺血再灌注损伤时细胞凋亡以及能量代谢的影响, 昆明医科大学学报.
    [11] 陈珊珊, 易敏春, 周国忠, 普跃昌, 胡毅, 韩米华, 金华.  CNTF干扰对BMSCs动脉移植缺血再灌注损伤脊髓下游信号通路STAT3/Caspase-9的影响, 昆明医科大学学报.
    [12] 谢姝姮.  小鼠缺血性脑卒中后免疫抑制及其机制, 昆明医科大学学报.
    [13] 刘少星.  帕瑞昔布钠预先给药对大鼠局灶脑缺血再灌注血脑屏障通透性的影响, 昆明医科大学学报.
    [14] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [15] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [16] 陈学平.  氨培养胎鼠神经细胞钙离子浓度变化与凋亡的相关性, 昆明医科大学学报.
    [17] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [18] 赵青.  细胞凋亡在Meckel’s 软骨消失中的作用研究, 昆明医科大学学报.
    [19] 殷露玮.  SD大鼠脊髓全横断损伤后神经细胞凋亡的研究, 昆明医科大学学报.
    [20] 李振.  多发性硬化患者外周血Annexin V结合T淋巴细胞凋亡和Fas的表达, 昆明医科大学学报.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  58
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 刊出日期:  2025-05-30

目录

    /

    返回文章
    返回